

Poincare Journal of Analysis & Applications Vol. 2017 (2), 73-82 ©Poincare Publishers

Analytic functions concerning with some subordinations

SHIGEYOSHI OWA[†], JUNICHI NISHIWAKI, DANIEL BREAZ AND NICOLETA BREAZ

Date of Receiving	:	01.03.2017
Date of Revision	:	13.08.2017
Date of Acceptance	:	24.08.2017

Abstract. For analytic functions in the class \mathcal{A}_n in the open unit disk \mathbb{U} , two subclasses $\mathcal{S}_n^*(\alpha)$ and $\mathcal{K}_n(\alpha)$ of starlike functions and convex functions are introduced. The object of the present paper is to discuss some interesting properties of functions in the classes $\mathcal{S}_n^*(\alpha)$ and $\mathcal{K}_n(\alpha)$ with some subordinations.

1. Introduction

Let \mathcal{A}_n be the class of functions f(z) of the form

$$f(z) = z + \sum_{k=n}^{\infty} a_k z^k$$
 $(n = 2, 3, 4, \cdots)$ (1.1)

which are analytic in the open unit disc $\mathbb{U} = \{z \in \mathbb{C} : |z| < 1\}$. If we consider a function $f(z) \in \mathcal{A}_n$ which satisfies

$$\operatorname{Re}\left(\frac{zf'(z)}{f(z)}\right) > 0 \qquad (z \in \mathbb{U})$$
(1.2)

then we say that f(z) is starlike with respect to the origin in \mathbb{U} . We denote the subclass of \mathcal{A}_n by \mathcal{S}_n^* consisting of starlike functions in \mathbb{U} . Also, we say that f(z) is convex in \mathbb{U} if $f(z) \in \mathcal{A}_n$ satisfies

$$\operatorname{Re}\left(1+\frac{zf''(z)}{f'(z)}\right) > 0 \qquad (z \in \mathbb{U}).$$
(1.3)

This is equivalent to $zf'(z) \in \mathcal{S}_n^*$. We denote by \mathcal{K}_n the subclass of \mathcal{A}_n consisting of all convex functions in \mathbb{U} .

Let us consider a function f(z) given by

$$f(z) = z + \frac{1}{n}z^n$$
 $(n = 2, 3, 4, \cdots).$ (1.4)

[†]Corresponding author.

²⁰¹⁰ Mathematics Subject Classification. 30C45.

Key words and phrases. Analytic function, starlike function, convex function, subordination. Communicated by: Shiv K. Kaushik