Poincare Journal of Analysis & Applications Vol. 7, No. 2 (2020), 185-195 ©Poincare Publishers DOI:10.46753/pjaa.2020.v07i02.004

WAVE COUPLED SYSTEM OF THE *p*-LAPLACIAN TYPE

DUCIVAL C. PEREIRA, CARLOS A. RAPOSO[†], CELSA H. M. MARANHÃO, AND ADRIANO P. CATTAI

Date of Receiving	:	02.	06.	2020
Date of Revision	:	04.	08.	2020
Date of Acceptance	:	05.	08.	2020

Abstract. In this work we study the existence of solution and the asymptotic behaviour for a nonlinear coupled system of wave equation of the p-Laplacian type given by

ſ	$u'' - \Delta_p u + u ^{r-1} u v ^{r+1} - \Delta u' = 0$	in $Q = \Omega \times (0, T)$,
	$v'' - \Delta_p v + v ^{r-1} v u ^{r+1} - \Delta v' = 0$	in $Q = \Omega \times (0, T)$,
Ł	$(u(x,0),v(x,0)) = (u_0(x),v_0(x))$	in Ω ,
	$(u'(x,0),v'(x,0)) = (u_1(x),v_1(x))$	in Ω ,
l	u(x,t) = v(x,t) = 0	in $\Sigma = \Gamma \times (0, T)$,

where $\Omega \subset \mathbb{R}^n$ is a bounded open set with sufficiently smooth boundary Γ . Existence of solution is made by using Faedo-Gallerkin approximations. We prove the exponential stability when p = 2 and polynomial decay if p > 2 based on M. Nakao [15, 16].

1. Introduction

Throughout this paper, we omit the space variable x of u(x,t) and simply denote u(x,t) by u(t) when there are no conflicts in the notation. C denotes various positive constants depending on the known constants and may be different at each appearance. Let T > 0 be a real number, $\Omega \subset \mathbb{R}^n$ be a bounded open set with sufficiently smooth boundary Γ . We denote by $Q = \Omega \times (0,T)$ the cylinder with lateral boundary $\Sigma = \Gamma \times (0,T)$. Here we consider $2 \leq p < \infty$ and q such that $\frac{1}{p} + \frac{1}{q} = 1$. The duality pairing between the space $W_0^{1,p}(\Omega)$ and its dual $W^{-1,q}(\Omega)$ will be denoted using the form $\langle \cdot, \cdot \rangle$. According to Poincaré's inequality, the standard norm $\| \cdot \|_{W_0^{1,p}(\Omega)}$ is equivalent to the norm $\| \nabla \cdot \|_p$ on $W_0^{1,p}(\Omega)$. Henceforth, we put $\| \cdot \|_{W_0^{1,p}(\Omega)} = \| \nabla \cdot \|_p$. We denote $\| \cdot \|_{L^2(\Omega)} = \| \cdot \|_2$ and the usual inner product by (\cdot, \cdot) . We denote the p-Laplacian

Key words and phrases. Global solution, p-Laplacian operator, asymptotic behaviour.

²⁰¹⁰ Mathematics Subject Classification. 35A01, 35J57, 35M30, 35B40.

Communicated by. Huy Hoang Nguyen

[†]Corresponding author