

Poincare Journal of Analysis & Applications Vol. 2014 (1), Pages 1- 8 ©Poincare Publishers

ON A GENERALIZED PRODUCT SUMMABILITY OF FOURIER SERIES

XHEVAT Z. KRASNIQI

Date of Receiving	:	April 27, 2014
Date of Revision	:	May 19, 2014
Date of Acceptance	:	June 19, 2014

Abstract. In this paper a generalized product of summability is introduced in order to make an advanced study on the special topic of summability. In addition, employing that product we establish a new theorem regarding to summability of Fourier series.

1. Introduction and Known Results

Let f(t) be a periodic function with period 2π and integrable over the interval $(-\pi, \pi)$ in the sense of Lebesgue. Let

$$f(t) \sim \frac{a_0}{2} + \sum_{n=1}^{\infty} (a_n \cos nt + b_n \sin nt)$$
 (1.1)

be its Fourier series.

For two sequences of real or complex numbers $p = \{p_n\}$ and $q = \{q_n\}$, let

$$P_n = p_0 + p_1 + p_2 + \dots + p_n = \sum_{\nu=0}^n p_{\nu}, \text{ for all } n,$$
$$Q_n = q_0 + q_1 + q_2 + \dots + q_n = \sum_{\nu=0}^n q_{\nu}, \text{ for all } n,$$

and let the convolution $(p * q)_n$ be defined by

$$R_n := (p * q)_n := \sum_{\nu=0}^n p_{\nu} q_{n-\nu}.$$

Communicated by: L.K. Vashisht

²⁰¹⁰ Mathematics Subject Classification. 40G05, 42A24, 40C05.

Key words and phrases. Abel's lemma, Summability method, Fourier series, Riemann-Lebesgue theorem.

The author would like to express many thanks to the anonymous referee for her/his valuable suggestions which definitely improved this paper.