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Abstract. The variable coefficients Sawada-Kotera equations andWick-type stochastic
Sawada-Kotera equations are investigated. White noise functional solutions are shown
by using the Hermite transform, homogeneous balance principle and the modified tanh-
coth method. Moreover, some examples are given for the investigated model.

1. Introduction

It is well known that the solitons are stable against mutual collisions and behave like
particles. In this sense, it is very important to study the nonlinear equations in random
environment. However, variable coefficients nonlinear equations, as well as constant
coefficients equations, cannot describe the realistic physical phenomena exactly. M.
Wadati [17] first answered the interesting question. How does external noise affect
the motion of solitons? and studied the diffusion of soliton of the KdV equation
under Gaussian noise, which satisfies a diffusion equation in transformed coordinates.
Wadati and Akutsu also studied the behaviors of solitons under the Gaussian white
noise of the stochastic KdV equations with and without damping [19]. In addition, a
nonlinear partial differential equation which describes wave propagations in random
media was presented by Wadati [18]. Now, many researchers pay more attention to
the study of the random waves, which are important subjects of stochastic partial
differential equations, a number of soliton solutions of nonlinear stochastic partial
differential equations and nonlinear stochastic fractional partial differential equations
are obtained [1,2,3,4,5,6,7,8,9,10,11,12,13,14,29,30,31]. Holden et al.[11] researched
stochastic partial differential equations in Wick versions via white noise functional
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approach. By using the homogeneous balance method, Xie studied exact solutions for
stochastic mKdV equations [31]. Chen and Li used the symmetry reductions to study
the soliton-like solutions for stochastic mKdV equation [2]. In this paper, with the
help of Hermite transformation, white noise theory and modified tanh-coth method,
we will deduce exact solutions for the Wick-type stochastic Sawada -Kotera equation
as the following form:

P (t) ⋄Ut +Q(t) ⋄U5x +R(t) ⋄ (U ⋄Uxxx +Ux ⋄Uxx) + S(t) ⋄U⋄2 ⋄Ux = 0, (1.1)

where “ ⋄ ” is the Wick product on the Kondratiev distribution space (S)−1which was
defined in [11],P (t),Q(t),R(t)andS(t)are(S)−1−valued functions. Moreover, when Wick
product “⋄ ”is replaced by ordinary product in Eq.(1.1), we obtain the Sawada -Kotera
equation with variable coefficients:

p(t)ut + q(t)u5x + r(t)(uuxxx +uxuxx) + s(t)u2ux = 0, (1.2)

which is of importance in mathematical physics field [15,16], where p(t),q(t), r(t), s(t)
are bounded measurable or integrable functions on R+. And Eq. (1.1) can be regarded
as the perturbation of Eq. (1.2).

2. White noise functional solutions of (1.1)

Taking the Hermite transform of Eq.(1.1), we get

P̃ (t, z)Ũt(x, t,z) + Q̃(t, z)Ũ5x(x, t,z) + R̃(t, z)[Ũ (x, t,z)Ũxxx(x, t,z)

+Ũx(x, t, z)Ũxx(x, t,z)] + S̃(t, z)Ũ2(x, t,z)Ũx(x, t,z) = 0, (2.1)

wherez = (z1, z2, ...) ∈ CNis a vector parameter. UsingŨ (x, t,z) = Ũ (ξ,z),ξ = x − ctthat
will carry out Eq. (2.1) into

−cλ1uξ +λ2u5ξ +λ3(uuξξξ +uξuξξ ) +λ4u
2uξ = 0, (2.2)

where u(ξ,z) = Ũ (ξ,z),λ1(t, z) = P̃ (t, z),λ2(t, z) = Q̃(t, z),λ3(t, z) = R̃(t, z)andλ4(t, z) =
S̃(t, z). Considering the homogeneous balance between u5ξandu2uξ in Eq.(2.2),
givesM = 2. According to the tanh-coth method [20-28], we can set the solution of
Eq.(2.1) in the form

u(x, t,z) = S(Y ) = a0(t, z) + a1(t, z)Y (ξ) + a2(t, z)Y
2(ξ)

+b1(t, z)Y
−1(ξ) + b2(t, z)Y

−2(ξ), (2.3)

where Y (ξ) satisfies the Riccati equation

Y ′ = c1 + c2Y + c3Y
2, (2.4)

andc1, c2, c3are constant to be prescribed later. By virtue of (2.3) and (2.4) with
observation of the linear independence ofY n(n = −7,−6, ...,7)Eq.(2.2) implies the
following system of nonlinear equations

−cλ1A0 +λ2E0 +λ3[a0C0 − a1C6 − a2C7 + b1C1 + b2C2] +A0[λ3B0λ4F0]
− A4[λ3B1 +λ4F1]−A5[λ3B2 +λ4F2]−A6[λ3B3 +λ4F3]
+ A1[λ3B5 +λ4F5] +A2[λ3B6 +λ4F6] +A3[λ3B7 +λ4F7] = 0,
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−cλ1A1 +λ2E1 +λ3[a0C1 + a1C0 − a2C6 + b1C2 + b2C3] +A1[λ3B0 +λ4F0]
+ A0[λ3B1 +λ4F1]−A4[λ3B2 +λ4F2]−A5[λ3B3 +λ4F3]
− A6[λ3B4 +λ4F4] +A2[λ3B5 +λ4F5] +A3[λ3B6 +λ4F6] = 0,

−cλ1A2 +λ2E2 +λ3[a0C2 + a1C1 + a2C0 + b1C3 + b2C4] +A2[λ3B0 +λ4F0]
+ A1[λ3B1 +λ4F1] +A0[λ3B2 +λ4F2]−A4[λ3B3 +λ4F3]
− A5[λ3B4 +λ4F4] +A3[λ3B5 +λ4F5] = 0,

−cλ1A3 +λ2E3 +λ3[a0C3 + a1C2 + a2C1 + b1C4 + b2C5] +A3[λ3B0 +λ4F0]
+ A2[λ3B1 +λ4F1] +A1[λ3B2 +λ4F2] +A0[λ3B3 +λ4F3]−A4[λ3B4 +λ4F4] = 0,

λ2E4 +λ3[a0C4 + a1C3 + a2C2 + b1C5] +A3[λ3B1 +λ4F1]
+ A2[λ3B2 +λ4F2] +A1[λ3B3 +λ4F3] +A0[λ3B4 +λ4F4] = 0,

λ2E5 +λ3[a0C5 + a1C4 + a2C3] +A3[λ3B2 +λ4F2]
+ A2[λ3B3 +λ4F3] +A1[λ3B4 +λ4F4] = 0,

λ2E6 +λ3[a1C5 + a2C4] +A3[λ3B3 +λ4F3] +A2[λ3B4 +λ4F4] = 0,

λ2E7 +λ3a2C5 +A3[λ3B4 +λ4F4] = 0,

cλ1A4 −λ2E8 +λ3[−a0C6 − a1C7 − a2C8 + b1C0 + b2C1]−A4[λ3B0 +λ4F0]
− A5[λ3B1 +λ4F1]−A6[λ3B2 +λ4F2] +A0[λ3B5 +λ4F5] +A1[λ3B6 +λ4F6]
+ A2[λ3B7 +λ4F7] +A3[λ3B8 +λ4F8] = 0,

cλ1A4 −λ2E9 +λ3[−a0C7 − a1C8 − a2C9 − b1C6 + b2C0]−A5[λ3B0 +λ4F0]
− A6[λ3B1 +λ4F1]−A4[λ3B5 +λ4F5] +A0[λ3B6 +λ4F6]
+ A1[λ3B7 +λ4F7] +A2[λ3B8 +λ4F8] = 0,

cλ1A6 −λ2E10 +λ3[−a0C8 − a1C9 − a2C10− b1C7 − b2C8]
− A6[λ3B0 +λ4F0]−A5[λ3B5 +λ4F5]−A4[λ3B6 +λ4F6]
+ A0[λ3B7 +λ4F7] +A1[λ3B8 +λ4F8] = 0,

−λ2E11 −λ3[a0C9 + a1C10 + b1C8 + b2C7]−A6[λ3B5 +λ4F5]
− A5[λ3B6 +λ4F6]−A4[λ3B7 +λ4F7] +A0[λ3B8 +λ4F8] = 0,

λ2E12 +λ3[a0C10 + b1C9 + b2C8] +A6[λ3B6 +λ4F6]
+ A5[λ3B7 +λ4F7] +A4[λ3B8 +λ4F8] = 0,

λ2E13 +λ3[b1C10 + b2C9] +A6[λ3B7 +λ4F7] +A5[λ3B8 +λ4F8] = 0,

λ2E14 +λ3b2C10 +A6[λ3B8 +λ4F8] = 0, (2.5)

where,A0 = a1c1−b1c3, A1 = a1c2+2a2c1, A2 = a1c3+2a2c2, A3 = 2a2c3,A4 = b1c2+2b2c3,
A5 = b1c1 +2b2c2, A6 = 2b2c1, B0 = c1A1 + c3A4, B1 = c2A1 +2c1A2, B2 = c3A1 +2c2A2 +
3c1A3, B3 = 2c3A2+3c2A3,B4 = 3c3A3, B5 = c2A4+2c3A5, B6 = c1A4+2c2A5+3c3A6, B7 =
2c1A5+3c2A6, B8 = 3c1A6, C0 = c1B1−c3B5, C1 = c2B1+2c1B2, C2 = c3B1+2c2B2+3c1B3,
C3 = 2c3B2 + 3c2B3 + 4c1B4, C4 = 3c3B3 + 4c2B4, C5 = 4c3B4, C6 = c2B5 + 2c3B6, C7 =
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c1B5 +2c2B6 +3c3B7, C8 = 2c1B6 +3c2B7 +4c3B8, C9 = 3c1B7 +4c2B8, C10 = 4c1B8, D0 =
c1C1 + c3C6, D1 = c2C1 +2c1C2, D2 = c3C1 +2c2C2 +3c1C3, D3 = 2c3C2 +3c2C3 +4c1C4,
D4 = 3c3C3 + 4c2C4 + 5c1C5, D5 = 4c3C4 + 5c2C5, D6 = 5c3C5, D7 = c2C6 + 2c3C7,
D8 = c1C6 + 2c2C7 + 3c3C8, D9 = 2c1C7 + 3c2C8 + 4c3C9, D10 = 3c1C8 + 4c2C9 + 5c3C10,
D11 = 4c1C9 + 5c2C10, D12 = 5c1C10, E0 = c1D1 − c3D7, E1 = c2D1 + 2c1D2, E2 =
c3D1 + 2c2D2 + 3c1D3, E3 = 2c3D2 + 3c2D3 + 4c1D4, E4 = 3c3D3 + 4c2D4 + 5c1D5, E5 =
4c3D4 + 5c2D5 + 6c1D6, E6 = 5c3D5 + 6c2D6, E7 = 6c3D6, E8 = c2D7 + 2c3D8, E9 =
c1D7+2c2D8+3c3D9, E10 = 2c1D8+3c2D9+4c3D10, E11 = 3c1D9+4c2D10+5c3D11, E12 =
4c1D10 +5c2D11 +6c3D12, E13 = 5c1D11 +6c2D12, E14 = 6c3D12, F0 = a20 +2(a1b1 + a2b2),
F1 = (a0a1+a2b1), F2 = a21+2a0a2, F3 = 2a1a2, F4 = a22, F5 = 2(a0b1+ab2 ), F6 = b21 +2a0b2,
F7 = 2b1b2, and F8 = b22.

In the remaining part of this section we will discuss and solve our problem for some
special cases for the Riccati equation as follows:

A. c1 = c2 = 1, c3 = 0.

This choice for the constants implies that

Y1(ξ) = exp(ξ)− 1. (2.6)

By the aid of MATHEMATICA, the above system of equations (2.5) can be solved for
the following cases:

Case I: a1 = a2 = b1 = 0,a0 =
±
√
4λ2

3+λ4(cλ1−16λ2)−2λ3
λ4

,λ1 , 0,λ3 , 0and16λ2 ≤ cλ1,

b2 =
±54λ3

√
4λ2

3+λ4(cλ1−16λ2)−208λ2
3−1710λ2λ4

±4
√
4λ2

3+λ4(cλ1−16λ2)
.

Using Eq.(2.6) and Eq.(2.3), then Eq.(2.1) has the solution:

u1 =
±
√
4λ2

3 +λ4(cλ1 − 16λ2)− 2λ3

λ4
+
±54λ3

√
4λ2

3 +λ4(cλ1 − 16λ2)− 208λ2
3 − 1710λ2λ4

±4
√
4λ2

3 +λ4(cλ1 − 16λ2)(exp(x − ct)− 1)2
.(2.7)

Case II: a1 = a2 = b2 = 0,λ1 , 0,λ3 , 0,λ2 ≤ cλ1, a0 =
±
√
λ2
3+4λ4(cλ1−λ2)−λ3

2λ4
,b1 =

−54λ2
λ3

.

Using Eq.(2.6) and Eq.(2.3), then Eq.(2.1) has the solution:

u2 =
±
√
λ2
3 +4λ4(cλ1 −λ2)−λ3

2λ4
+

−54λ2

λ3(exp(x − ct)− 1)
. (2.8)

B. c1 = −c3 = 0.5, c2 = 0.
This choice for the constants implies that

Y2(ζ) = coth(ξ)± csch(ξ), (2.9)

or

Y3(ζ) = tanh(ξ)± isech(ξ). (2.10)
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By the aid of MATHEMATICA, the above system of equations (2.5) can be solved for
the following cases:
Case III: a0 = a1 = a2 = b1 = 0,λ3 , 0,b2 =

35λ2−2cλ1
5λ3

.
Using Eq.(2.6) and Eq.(2.3), then Eq.(2.1) has the solution:

u3 =
35λ2 − 2cλ1

5λ3(coth(x − ct)± csch(x − ct))2
, (2.11)

u4 =
35λ2 − 2cλ1

5λ3(tanh(x − ct)± i sech(x − ct))2
. (2.12)

Case IV: a0 = a1 = b1 = b2 = 0,λ3 , 0, a2 =
4cλ1−31λ2

2λ3
.

Using Eq.(2.6) and Eq.(2.3), then Eq.(2.1) has the solution:

u5 =
4cλ1 − 31λ2

2λ3
(coth(x − ct)± csch(x − ct))2, (2.13)

u6 =
4cλ1 − 31λ2

2λ3
(tanh(x − ct)± i sech(x − ct))2. (2.14)

Lemma 2.1. [11] Supposeu(x, t, z)is a solution (in the usual strong pointwise sense) of
Eq. (2.1) for(x, t)in some bounded open setG ⊂ R ×R+, and for allz ∈ Km(n), for somem <
∞,n > 0. Moreover, suppose thatu(x, t,z)and all its partial derivatives, which are involved
in Eq.(2.1), are (uniformly) bounded for(x, t, ) ∈ G×Km(n), continuous with respect to(x, t) ∈
Gfor allz ∈ Km(n)and analytic with respect toz ∈ Km(n), for all(x, t) ∈ G. Then there existsU (x, t) ∈
(S)−1such that u(x, t,z) = Ũ (x, t)(z), for all (x, t,z) ∈ G×Km(n)andU (x, t)solves (in the strong
sense) Eq. (1.1) in(S)−1.

From Lemma 2.1, we know that there existsU (x, t) ∈ (S)−1such thatu(x, t,z) = Ũ (x, t)(z)for
all(x, t,z) ∈ G × Km(n), whereU (x, t)is the inverse Hermite transformation ofu(x, t,z).
Consequently, U (x, t) solves Eq.(1.1). Hence, for P (t) , 0,R(t) , 0,S(t) > 0 and Q(t) ≤
cP (t)\16 the white noise functional solutions of Eq.(1.1) are as follows:

U1(x, t) =
θ(t)− 2R(t)

S(t)
+
54R(t) ⋄θ(t)− 208R⋄2(t)− 171Q(t) ⋄ S(t)

4θ(t) ⋄ (exp⋄(x − ct)− 1)⋄2
, (2.15)

U2(x, t) =
θ(t)−R(t)

2S(t)
− 54Q(t)
R(t) ⋄ (exp⋄(x − ct)− 1)

, (2.16)

U3(x, t) =
35Q(t)− 2cP (t)

5R(t) ⋄ (coth⋄(x − ct)± csch⋄(x − ct))⋄2
, (2.17)

U4(x, t) =
35Q(t)− 2cP (t)

5R(t) ⋄ (tanh⋄(x − ct)± isech⋄(x − ct))⋄2
, (2.18)

U5(x, t) = (4cP (t)− 31Q(t))(2R(t) ⋄ (coth⋄(x − ct)± csch⋄(x − ct))⋄2, (2.19)

U6(x, t) = (4cP (t)− 31Q(t))(2R(t) ⋄ (tanh⋄(x − ct)± isech⋄(x − ct))⋄2, (2.20)

where

θ(t) = ±{4R⋄2(t) + S(t) ⋄ [cP (t)− 16Q(t)]}⋄
1
2 .
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We observe that for different forms ofP (t),Q(t),R(t)andS(t), we can get different
solutions of (1.1) from (2.15)-(2.20).

3. Examples

LetW (t) = Ḃ(t)be the Gaussian white noise, where B(t)is the Brownian motion. We
have the Hermite transformW̃ (t, z) =

∑∞
i=1 zi

∫ t
0 ηi(s)ds. Sinceexp⋄[B(t)] = exp[B(t) −

t2/2], we havetanh⋄[B(t)] = tanh[B(t)− t2/2], coth⋄[B(t)] = coth[B(t)− t2/2], sech⋄[B(t)] =
sech[B(t) − t2/2]andcsch⋄[B(t)] = csch[B(t) − t2/2]. Suppose P (t) = Q(t) = αR(t),R(t) =
S(t) = f (t) + βW (t),where α,βare arbitrary constants and f (t)is integrable or bounded
measurable function onR+. Hence, the white noise functional solutions of Eq.(2.1) are
as follows:

U7(x, t) = ±
√
4+α(c − 16) + R(t) ⋄θ(t)− 208R⋄2(t)− 1710αS⋄2(t)

4θ(t) ⋄ [exp(x − c[t − βB(t) + βt2 \ 2])− 1]2
− 2, (3.1)

U8(x, t) =
1
2
(±
√
1+4α(c − 16)− 1)− 54α

[exp(x − c[t − βB(t) + βt2 \ 2])− 1]
, (3.2)

U9(x, t) =
α(35− 2c)

[coth(x − c[t − βB(t) + βt2 \ 2])± csch(x − c[t − βB(t) + βt2 \ 2])]2
, (3.3)

U10(x, t) =
α(35− 2c)

[tanh(x − c[t − βB(t) + βt2 \ 2])± isech(x − c[t − βB(t) + βt2 \ 2])]2
, (3.4)

U11(x, t) =
α
2
(4c − 31)[coth(x − c[t − βB(t) + βt2 \ 2])± csch(x − c[t − βB(t) + βt2 \ 2])]2,(3.5)

U12(x, t) =
α
2
(4c − 31)[tanh(x − c[t − βB(t) + βt2 \ 2])± isech(x − c[t − βB(t) + βt2 \ 2])]2.(3.6)

4. Conclusion

In this paper, we have obtained many exact solutions to the Wick-type stochastic
Sawada -Kotera equation via Hermite transformation and the modified tanh-coth
method . These approaches can be used in various types of nonlinear stochastic
equations, and help us to findmore new stochastic excitations (especially the stochastic
solitary wave excitations). In addition, we should also note that since there is a
unitary map between the Wiener and the Poisson white noise spaces, we can obtain
the solution of the Poissonian SPDE simply by applying this map to the solution of
the corresponding Gaussian SPDE. A nice, concise account of this connection was
given by Benth and Gjerde [1], and can be seen in Section 4.9 of [11] .Hence, we can
get exact solutions of (1.1) if the coefficients P (t),Q(t),R(t)andS(t)are Poissonian white
noise functionals.
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