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Abstract. The main aim of this paper is to determine the fine spectrum of the operator
B(r, s, t) on γ of all convergent series. Also, we study the approximate point spectrum,
defect spectrum and compression spectrum of the matrix operator B(r, s, t) on γ .

1. Introduction

In functional analysis, the spectrum of an operator generalizes the notion of
eigenvalues for matrices. The spectrum of an operator over a Banach space is
partitioned into three parts, which are point spectrum, the continuous spectrum and
residual spectrum. The calculation of these three parts of the spectrum of an operator
is called calculating the fine spectrum of the operator. By w we denote the space of all
complex-valued sequences. Any vector subspace of w is called a sequence space. We
write l∞, c, c0, and lp for the spaces of all bounded, convergent, null and p-absolutely
summable sequences, where 1 ≤ p <∞. The space γ of all convergent series is defined
by

γ =

(xk) ∈ w :

 n∑
k=0

xk

 ∈ c
 .

If T : γ → γ is a bounded linear operator with the matrix A, then its adjoint operator
T ∗ : γ∗→ γ∗ is defined by transpose of the matrix A and γ∗ is isomorphic to l1 with the

norm ∥x∥ =
∞∑
k=0
|xk |.

Let X and Y be two sequence spaces and A = (ank) be an infinite matrix of real or
complex numbers ank , where n,k ∈N = {1,2,3, . . .}. Then, we say that A defines a matrix
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mapping from X into Y , and we denote it by writing A : X → Y , if for every sequence
x = (xk) ∈ X the sequence Ax =

{
(Ax)n

}
n∈N, the A-transform of x, is in Y , where

(Ax)n =
∑
k

ankxk (n ∈N) (1.1)

By (X : Y ), we denote the class of all matrices A such that A : X→ Y . Thus, A ∈ (X : Y )
if and only if the series on the right side of (1.1) converges for each n ∈ N and every
x ∈ X, and we have Ax =

{
(Ax)n

}
n∈N ∈ Y for all x ∈ X.

The spectrum and fine spectrum of linear operators which are defined by some triangle
matrices over some sequence spaces are studied. One of them is the spectrum of the
Cesaro operator on the sequence space c0 which was studied by Reade [13]. Okutoyi
studied the spectrum of the Cesaro operator C1 on bv0 [12]. The fine spectrum of the
difference operator ∆ over the sequence spaces c0 and c has been studied by Altay and
Başar [1]. Same authors have studied the fine spectrum of the generalized difference
operator B (r, s) over the sequence spaces c0 and c [2]. Then, Furkan, Bilgiç and Altay
[7] have studied the fine spectrum of the operator B(r, s, t) over c0 and c. Bilgiç and
Furkan [5] have studied the fine spectrum of operator B(r, s, t) over l1 and bv. The
fine spectrum of operator B(r, s, t) over the sequence spaces lp and bvp (1 < p <∞) has
been studied by Furkan, Bilgiç and Başar [8]. Recently, Başar, Durna and Yıldırım
[4] studied subdivisions of spectra for the triple band matrix over certain sequence
spaces, and fine spectrum of the generalized difference operator B (r, s) over the class
of convergent series has been studied by Dutta and Tripathy [6]

2. Preliminaries and Notations

In this section, basic definitions which are benefit from [4], are given.
Let X and Y be Banach spaces and T : X→ Y a bounded linear operator. We denote the
range of T by R (T ), and B (X), the set of all bounded linear operators on X into itself.
If X is any Banach space and T ∈ B (X), then the adjoint T ∗ of T is a bounded linear
operator on the dual X∗ of X defined by (T ∗φ) (x) = φ (T x) for all φ ∈ X∗ and x ∈ X with
∥T ∥ = ∥T ∗∥.
Let X , {θ} be a complex normed space and T : D (T )→ X be a linear operator with
domain D (T ) ⊂ X. By T , associate the operator Tα = T − αI , where α is a complex
number and I is the identity operator on D (T ). If Tα has an inverse, which is linear,
we denote it by T −1α = (T −αI)−1, and it is called the resolvent operator of T . The
name resolvent is appropriate, since T −1α helps to solve the equation Tαx = y. Thus,
x = T −1α y provided T −1α exist. More important, the investigation of properties of T −1α
will be basic for an understanding of the operator T itself. Naturally, many properties
of Tα and T −1α depend on α, and spectral theory is concerned with those properties.
For instance, we shall be interested in the set of all α in the complex plane such that
T −1α exist. Boundedness of T −1α is another property that will be essential. We shall also
ask for what α’s the domain of T −1α is dense in X, to name just a few aspects. For our
investigation of T , Tα and T −1α , we need some basic concepts in spectral theory which
are given as follows (see[[11] pp. 370–371]).
Let X , {θ} be a complex normed space and T : D (T ) → X also be a linear operator
with domain D (T ) ⊂ X. A regular value α of T is a complex number such that

(R1): T −1α exist
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(R2): T −1α is bounded
(R3): T −1α is defined on a set which is dense in X.

The resolvent set ρ (T ,X) of T is the set of all regular values α of T . Its complement, in
the complex plane C, σ (T ,X) = C \ ρ (T ,X) is called the spectrum of T . Furthermore,
the spectrum σ (T ,X) is partitioned into three disjoint sets as follows:
The point spectrum σp (T ,X) is the set such that T −1α does not exist. An α ∈ σp (T ,X) is
called an eigenvalue of T .
The continuous spectrum σc (T ,X) is the set such that T −1α exist and satisfies (R3) but
not (R2).
The residual spectrum σr (T ,X) is the set such that T −1α exist (and may be bounded or
not) but not satisfy (R3).
Therefore, these three subspectras form disjoint subdivisions

σ (T ,X) = σp(T ,X)∪ σc(T ,X)∪ σr (T ,X). (2.1)

In this section, following Appell et al. [3], we call the three more subdivisions of the
spectrum called the approximate point spectrum, defect spectrum, and compression
spectrum.
Given a bounded linear operator T in a Banach space X, we call a sequence (xk) in X as
a Wely sequence for T if ∥xk∥ = 1 and ∥T xk∥ → 0, as k→∞.
In what follows, we call the set

σap (T ,X) := {α ∈ C : there exists a Wely sequence for T −αI} (2.2)

the approximate point spectrum of T . Moreover, the subspectrum

σδ (T ,X) := {α ∈C : T −αI is not surjective} (2.3)

is called defect spectrum of T .
The two subspectra given by (2.2) and (2.3) form a (not necessarily disjoint) subdivision

σ (T ,X) = σap (T ,X)∪ σδ (T ,X)

of the spectrum. There is another subspectrum,

σco (T ,X) :=
{
α ∈: R(αI − T ) , X

}
which is often called compression spectrum in the literature. The compression
spectrum gives rise to another (not necessarily disjoint) decomposition

σ (T ,X) = σap (T ,X)∪ σco (T ,X)

of spectrum. Clearly, σp (T ,X) ⊆ σap (T ,X) and σco (T ,X) ⊆ σδ (T ,X). Moreover,
comparing these subspectra with those in (2.1) we note that

σr (T ,X) = σco (T ,X) \ σp (T ,X) , and σc (T ,X) = σ (T ,X) \
[
σp (T ,X)∪ σco (T ,X)

]
.

Proposition 2.1. [3] Spectra and subspectra of an operator T ∈ B(X) and its adjoint
T ∗ ∈ B(X∗) are related by following relations:

(a): σ (T ∗,X∗) = σ (T ,X)
(b): σc(T ∗,X∗) ⊆ σap(T ,X)
(c): σap(T ∗,X∗) = σδ(T ,X)
(d): σδ(T ∗,X∗) = σap(T ,X)
(e): σp(T ∗,X∗) = σco(T ,X)
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(f): σco(T ∗,X∗) ⊇ σp(T ,X)
(g): σ (T ,X) = σap(T ,X)∪ σp(T ∗,X∗) = σp(T ,X)∪ σap(T ∗,X∗).

Relations (c)-(f) show that the approximate point spectrum is in a certain sense dual
to the defect spectrum, and the point spectrum dual to compression spectrum. The
equality (g) implies, in particular, that σ (T ,X) = σap(T ,X) if T is a Hilbert space and
T is normal. Roughly speaking, this shows that normal (in particular, self-adjoint)
operator on Hilbert space are most similar to matrices in finite dimensional spaces (see
[3]).

From Goldberg [9], If T ∈ B(X), X a Banach space, then there are three possibilities
for R(T ),

(A): R(T ) = X,
(B): R(T ) , R(T ) = X,
(C): R(T ) , X,

and
(1): T −1 exists and is continuous,
(2): T −1 exists but is discontinuous,
(3): T −1 does not exist.

If these possibilities are combined in all ways, nine different states are created. These
are labelled by: A1, A2, A3, B1, B2, B3, C1, C2, and C3. If an operator is in state C2, for
example, then R(T ) , X and T −1 exists but is discontinuous (see[9]).

Lemma 2.2. [9] The adjoint operator T ∗ of T is onto if and only if T has a bounded inverse.

Lemma 2.3. [9] T has a dense range if and only if T ∗ is one to one.

Lemma 2.4. [14] The matrix A = (ank) gives rise to a bounded linear operator T ∈ B (l1)
from l1 to itself if and only if the supremum of l1 norms of the columns of A is bounded.

Corollary 2.5. [9] σr (T ,X) ⊆ σp(T ∗,X∗) ⊆ σr (T ,X)∪ σp(T ,X).

3. Main results

In this section, we study the fine spectrum of lower triangular triple-band matrix
B (r, s, t) over the sequence space γ . Now, B (r, s, t) is determined by

B(r, s, t) =



r 0 0 0 0 · · ·
s r 0 0 0 · · ·
t s r 0 0 · · ·
0 t s r 0 · · ·
0 0 t s r · · ·
...

...
...

...
...

. . .


,

where s and t are complex parameters which do not simultaneously vanish.

Theorem 3.1. B (r, s, t) : γ → γ is a bounded linear operator with

∥B(r, s, t)∥(γ,γ) = |r |+ |s|+ |t| .

Proof. The proof is obvious. �
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Theorem 3.2. Let
√
s2 = −s and S1 =

{
α ∈ C :

∣∣∣∣∣ 2(r−α)
−s+
√
s2−4t(r−α)

∣∣∣∣∣ ≤ 1
}
. Then, σ (B(r, s, t),γ) =

S1.

Proof. Now, we show that (B (r, s, t)−αI)−1 exists and (B (r, s, t)−αI)−1 is in B(γ) for
α ∈C with ∣∣∣∣∣∣ 2(r −α)

−s+
√
s2 − 4t(r −α)

∣∣∣∣∣∣ > 1.

Then we indicate that (B (r, s, t)−αI)−1 does not exist for α ∈ S1.
Let α < S1. So, we have α , r. Since α , r, B (r, s, t)−αI is triangle and hence (B (r, s, t)−αI)−1
exists.
By solving the equation [B (r, s, t)−αI]x = y. We obtain
(r −α)x0 = y0
sx0 + (r −α)x1 = y1
txo + sx1 + (r −α)x2 = y2
...
and in this way we can get
x0 =

y0
r−α ,

x1 =
1

r−α y1 +
−s

(r−α)2
yo,

x2 =
1

r−α y2 +
−s

(r−α)2
y1 +

s2−(r−α)t
(r−α)3

y0,

...

Let a1 =
1

r−α , a2 =
−s

(r−α)2
, . . . , an =

−(san−1+tan−2)
r−α , (n ≥ 3). So we can observe

(B(r, s, t)−αI)−1 =


a1 0 0 · · ·
a2 a1 0 · · ·
a3 a2 a1 · · ·
...

...
...

. . .

.
Clearly, when s2 , 4t(r −α), an =

(u1)
n−(u2)n√

s2−4t(r−α)
for n ≥ 1 where

u1 =
−s+
√
s2−4t(r−α)
2(r−α) and u2 =

−s−
√
s2−4t(r−α)
2(r−α) .

Since α < S1, then |u1| < 1. So, we have |u2| < |u1| and hence |u2| < 1.
Since |u1| < 1 and |u2| < 1, we can see that

∥∥∥(B (r, s, t)−αI)−1∥∥∥
(γ,γ)

= sup
n∈N

n∑
k=1
|ak | =

∞∑
k=1
|ak |

≤ 1∣∣∣∣√s2−4t(r−α)
∣∣∣∣
(
∞∑
k=1

(
|u1|k + |u2|k

))
<∞.

This shows that σ (B(r, s, t),γ) ⊆ S1.
Let α ∈ S1 and α = r. So,
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(B(r, s, t)−αI) =



0 0 0 0 · · ·
s 0 0 0 · · ·
t s 0 0 · · ·
0 t s 0 · · ·
...

...
...

...
. . .


,

(B(r, s, t)−αI) does not have a dense range, so it is not invertible.
If s2 = 4t(r −α), then an =

(
2n
−s

)(
−s

2(r−α)

)n
for all n ≥ 1 where

(r −α)an + san−1 + tan−2 = 0. Since
∣∣∣∣ −s
2(r−α)

∣∣∣∣ ≥ 1, then (B (r, s, t)−αI)−1 < B(γ).
We may assume that α , r and s2 , 4t(r −α). Since α , r, then (B (r, s, t)−αI)−1 exists,
but since s2 , 4t(r −α) and |u1| > |u2| > 1, then (B (r, s, t)−αI)−1 is not element B (γ) as
in [5].
This shows that S1 ⊆ σ (B(r, s, t),γ). �

Theorem 3.3. σp(B(r, s, t),γ) = ∅.

Proof. Let B(r, s, t)x = αx for x , θ in γ . This gives
rx0 = αx0
sx0 + rx1 = αx1
tx0 + sx1 + rx2 = αx2
...
If xn0 is the first nonzero entry of the sequence x = (xn), then α = r and

txn0−1 + sxn0 + rxn0+1 = αxn0+1

which implies that xn0 = 0. This contradicts the fact that xn0 , 0 which means that
σp(B(r, s, t),γ) = ∅ and this completes the proof. �

Theorem 3.4. Let S2 =
{
α ∈ C :

∣∣∣∣∣ 2(r−α)
−s+
√
s2−4t(r−α)

∣∣∣∣∣ < 1
}
. Then σp (B(r, s, t)

∗,γ∗) = S2.

Proof. Let B(r, s, t)∗x = αx for x , θ in γ∗ � l1. Then, by solving the system of linear
equations as in [2],
rx0 + sx1 + tx2 = αx0
rx1 + sx2 + tx3 = αx1
rx2 + sx3 + tx4 = αx2
...
If α = r, then x = (x0,0,0,0, . . .) for x0 , 0 is an eigenvector corresponding to α = r.
Suppose that α , r, we get
xn =

Pn−1
tn−1

(α − r)x0 +
Pn
tn−1

x1; (n ≥ 2) where Pn = an(r −α)n.
Suppose that α ∈ S2. So we can choose that x0 = 1, x1 =

2(r−α)
−s+
√
s2−4t(r−α)

. We can obtain

x2 = (x1)2, , x3 = (x1)3, . . . , xn = (x1)n, . . . for all n ≥ 2. Hence, since
∣∣∣∣∣ 2(r−α)
−s+
√
s2−4t(r−α)

∣∣∣∣∣ < 1,
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we observe that x ∈ γ∗. This demonstrate thatα ∈C :

∣∣∣∣∣∣ 2(r −α)
−s+

√
s2 − 4t(r −α)

∣∣∣∣∣∣ < 1

 ⊆ σp(B(r, s, t)
∗,γ∗).

Assume that α < S2. So, |u1| ≤ 1 and α , r. We have

xn+1
xn

=
( r −α

t

)( an
an−1

)−x0 + an+1
an

x1

−x0 +
an
an−1

x1

 .
Part 1: |u2| = |u1| < 1.

In this part we have s2 = 4t(r −α). So, we have an =
(
2n
−s

)(
−s

2(r−α)

)n
. We observe that

lim
n→∞

an+1
an

= u2 = u1 and lim
n→∞

∣∣∣∣∣xn+1xn

∣∣∣∣∣ = 1
|u2|

> 1.

So (xn) < l1.

Part 2: |u2| = |u1| = 1

In this part we have s2 = 4t(r − α). Suppose that α ∈ σp(B(r, s, t)∗,γ∗), for x , θ in

γ∗. We get xn =
(
−s
2t

)n−1 (
(1−n)

(
−s
2t

)
x0 + x1

)
. Since lim

n→∞
|xn| = 0 then we have x = θ. But

this is a contradiction. Hence we must have α < σp(B(r, s, t)∗,γ∗).

Part 3: |u2| < |u1| ≤ 1.

In this part we have s2 , 4t(r −α).
Clearly lim

n→∞
an
an−1

= u1. Since x0 = 1, x1 = 2(r−α)
−s+
√
s2−4t(r−α)

, −x0 + u1x1 = 0. So, we get

xn =
1

u1n
x0. Therefore (xn) < l1. Because |u1| ≤ 1 and lim

n→∞

∣∣∣∣ xn+1xn

∣∣∣∣ = ∣∣∣∣ 1
u2

∣∣∣∣ > 1, so (xn) < l1.

Therefore, we have σp(B(r, s, t)∗,γ∗) ⊆
{
α ∈:

∣∣∣∣∣ 2(r−α)
−s+
√
s2−4t(r−α)

∣∣∣∣∣ < 1
}
, from Part 1, 2 and

3. �

Theorem 3.5. σr (B(r, s, t),γ) = S2.

Proof. Since Theorem 3.4, B(r, s, t)∗ −αI is not one to one for all α ∈ S2. So, B(r, s, t)−αI
does not have a dense in γ for all α ∈ S2 from Lemma 2.3. We have also seen that
(B(r, s, t)−αI)−1 exist. �

Theorem 3.6. σc (B(r, s, t),γ) =
{
α ∈C :

∣∣∣∣∣ 2(r−α)
−s+
√
s2−4t(r−α)

∣∣∣∣∣ = 1
}

Proof. The proof is simple. �

Theorem 3.7. Let α = r and |t| < |s|. Then α ∈ C1σ (B (r, s, t) ,γ) .

Proof. Since α = r, then B(r, s, t)−αI is in state C1 or C2. We can see that
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(B (r, s, t)−αI)−1 =



0 1
s 0 0 · · ·

0 −t
s2

1
s 0 · · ·

0 (−t)2
s3

−t
s2

1
s · · ·

0 (−t)3

s4
(−t)2
s3

−t
s2
· · ·

...
...

...
...

. . .


.

So, this gives (B (r, s, t)−αI)−1 ∈ B(γ) for |t| < |s| . Consequently, α ∈ C1σ (B (r, s, t) ,γ)
for |t| < |s| . �
Theorem 3.8. Let α = r and |t| ≥ |s|. Then α ∈ C2σ (B (r, s, t) ,γ) .

Proof. Proof is made similarly by Theorem 3.7. �

4. The Approximate Point Spectrum, Defect Spectrum and Compression Spectrum
of The Operator B(r, s, t) on γ

In the following three theorem, we give the approximate point spectrum, defect
spectrum and compression spectrum of the matrix operator B(r, s, t) on γ and these
theorems similar as in Theorems of [4].

Theorem 4.1. σap(B(r, s, t),γ) =
{

S1 \ {r} , |t| < |s|
S1 , |t| ≥ |s|

Proof. Since from Table 1 determined [10],

σap (B(r, s, t),γ) = σ (B(rs, t),γ) \C1σ (B(r, s, t),γ)

So

σap(B(r, s, t),γ) =
{

S1 \ {r} , |t| < |s|
S1 , |t| ≥ |s|

�

Theorem 4.2. σδ(B(r, s, t),γ) =
{
α ∈C :

∣∣∣∣∣ 2(r−α)
−s+
√
s2−4t(r−α)

∣∣∣∣∣ ≤ 1
}
.

Proof. Since the following equality

σδ (B(r, s, t),γ) = σ (B(r, s, t),γ) \A3σ (B(r, s, t),γ)

holds from Table 1 determined [10] and we derive by Theorem 3.2, 3.3 that

σδ(B(r, s, t),γ) =

α ∈C :

∣∣∣∣∣∣ 2(r −α)
−s+

√
s2 − 4t(r −α)

∣∣∣∣∣∣ ≤ 1

 .
�

Theorem 4.3. σco(B(r, s, t),γ) =
{
α ∈ C :

∣∣∣∣∣ 2(r−α)
−s+
√
s2−4t(r−α)

∣∣∣∣∣ < 1
}
.

Proof. We have by Theorem 3.4 and (e) of Proposition 2.1 that

σco(B(r, s, t),γ) =

α ∈C :

∣∣∣∣∣∣ 2(r −α)
−s+

√
s2 − 4t(r −α)

∣∣∣∣∣∣ < 1

 .
�
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Conclusion

In this paper, the spectra of matrix operator on convergent series is established. As
a conclusion, we say that our results reduce to the spectrum of B(r, s) which is studied
Dutta et al. [6] over γ since B(r, s,0) = B(r, s). So, this study is more general than
fine spectrum of the generalized difference operator B(r, s) over the class of convergent
series.
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