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Abstract. In this study, we define normal and rectifying curves in the equiform
differential geometry of the Galilean space. Furthermore, we obtain some
characterizations for normal and rectifying curves in the equiform geometry of the
Galilean space G.

1. Introduction

A Galilean space may be considered as the limit case of a pseudo-Euclidean space
in which the isotropic cone degenerates to a plane. This limit transition corresponds to
the limit transition from the special theory of relativity to classical mechanics. On the
other hand, Galilean space-time plays an important role in nonrelativistic physics. The
fact that the fundamental concepts such as velocity, momentum, kinetic energy, etc.
and principles; laws of motion and conservation laws of classical physics are expressed
in terms of Galilean space[4]. As it is well known geometry of space is associated with
mathematical group. The idea of invariance of geometry under transformation group
may imply that, on some spacetimes of maximum symmetry there should be a principle
of relativity, which requires the invariance of physical laws without gravity under
transformations among inertial systems. Besides, theory of curves and the curves of
constant curvature in the equiform differential geometry of the isotropic spaces I13 and
I23 , and the Galilean space G3 are described in [1] and [2], respectively. Although the
equiform geometry has minor importance related to usual one, the curves that appear
here in the equiform geometry, can be seen as generalizations of well-known curves
from above mentioned geometries and therefore could have been of research interest.

The purpose of the present paper is to find necessary conditions for normal and
rectifying curves in the equiform geometry of the Galilean space G3.
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2. Preliminaries

The Galilean space G3 is a Cayley-Klein space equipped with the projective metric
of signature (0,0,+,+). The absolute figure of the Galilean space consist of an ordered
triple {w,f , I}, where w is the ideal(absolute) plane, f is the line(absolute line) in w and
I is the fixed elliptic involution of points of f .

In the non-homogeneous coordinates the similarity group H8 has the form

x̄ = a11 + a12x

ȳ = a21 + a22x+ a23y cosθ + a23z sinθ (2.1)
z̄ = a31 + a32x − a23y sinθ + a23zcosθ

where aij and θ are real numbers [2]. In what follows the real numbers a12 and a23
will play the special role. In particular, for a12=a23 = 1, defines the group B6 ⊂ H8 of
isometries of the Galilean space G3. The Galilean scalar product can be written as

⟨
x,y

⟩
=

{
x1x2, if x1 , 0 or x2 , 0

y1y2 + z1z2 if x1 = 0 and x2 = 0,

}
where x = (x1, y1, z1) and y = (x2, y2, z2). It leaves invariant the Galilean norm of the
vector x defined by

∥x∥ =

 x1, if x1 , 0√
y21 + z21, if x1 = 0.


A curve α : I ⊂ R → G3 of the class C∞ in the Galilean space G3 is defined by the
parametrization

α(s) = (s,y(s), z(s)),

where s is a Galilean invariant arc-length of α. Then the curvature κ(s) and the torsion
τ(s) are given by, respectively

κ(s) =
√
ÿ(s)2 + z̈(s)2, τ(s) =

det((α̇(s), α̈(s),
...
α(s))

κ2(s)
.

On the other hand, the Frenet vectors of α(s) in G3 are defined by

t(s) = α̇(s) = ((1, ẏ(s), ż(s)),

n(s) =
1

κ(s)
α̈(s) =

1
κ(s)

((0, ÿ(s), z̈(s)), (2.2)

b(s) =
1

κ(s)
((0,−z̈(s), ÿ(s)).

The vectors t,n,b are called the vector of tangent, principal normal and binormal of α,
respectively. For their derivatives the following Frenet formula satisfies [2]

ṫ(s) = κ(s)n(s),
ṅ(s) = τ(s)b(s), (2.3)

ḃ(s) = −τ(s)n(s).
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3. Frenet Formulas in Equiform Geometry of G3

Let α : I → G3 be a curve in the Galilean spaceG3. We define the equiform parameter
of α by

σ :=
∫

1
ρ
ds =

∫
κds,

where ρ = 1
κ is the radius of curvature of the curve α. Then, we have

ds
dσ

= ρ. (3.4)

Let h be a homothety with the center in the origin and the coefficient λ. If we put
α̃ = h(α), then it follows

s̃ = λs and ρ̃ = λρ,

where s̃ is the arc-length parameter of α̃ and ρ̃ the radius of curvature of this curve.
Therefore, σ is an equiform invariant parameter of α [2].

From now on, we define the Frenet formula of the curve α with respect to the
equiform invariant parameter σ in G3. The vector

T =
dα
dσ

is called a tangent vector of the curve α. From 2.2 and 3.4 we get

T =
dα
ds

ds
dσ

= ρ · dα
ds

= ρ · t. (3.5)

We define the principal normal vector and the binormal vector by

N = ρ ·n, B = ρ · b. (3.6)

Then, we easily show that {T ,N,B} are an equiform invariant orthonormal frame of the
curve α.

On the other hand, the derivations of these vectors with respect to σ are given by

T
′

=
dT
dσ

= ρ̇T +N,

N
′

=
dN
dσ

= ρ̇N + ρτB, (3.7)

B
′

=
dB
dσ

= ρτN + ρ̇B.

Definition 3.1. The function K : I →R defined by

K = ρ̇

is called the equiform curvature of the curve α [2].

Definition 3.2. The function T : I →R defined by

T =ρτ =
τ
κ

is called the equiform torsion of the curve α [2].
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Thus, the formula analogous to the Frenet formula in the equiform differential
geometry of the Galilean space have the following form

T p = K·T +N,

N p = K·N + T ·B, (3.8)
Bp = −T ·N +K·B.

The equiform parameter σ =
∫
κ(s)ds for closed curves is called the total curvature, and

it plays an important role in global differential geometry of Euclidean space. Also, the
function τ

κ has been already known as a conical curvature and it also has interesting
geometric interpretation.

Remark 3.3. Let α : I → G3 be a curve in the equiform differential geometry of the
Galilean space G3. So, following statements are true (see for details [2]):

i) If α(s) is an isotropic logarithmic spiral in G3, then K =const. , 0 and T = 0.
ii) If α(s) is an circular helix in G3, then K =0 and T =const. , 0.
iii) If α(s) is an isotropic circle in G3, then, K =0 and T = 0.

4. Normal and Rectifying curves in the Equiform Geometry of the Galilean Space

In this section, we firstly give definition of normal and rectifying curves in the
equiform differential geometry of G3 and later we show necessary conditions in case α
is a normal curve or rectifying curve in G3.

Definition 4.1. Let α : I → G3 be a curve in the Galilean space. If the position vector of
α always lies in its normal plane, then it’ s called normal curve inG3. By this definition,
position vector of curve α in equiform geometry

α(s) = λ(s)N (s) + η(s)B(s)

where λ(s) and η(s) are orbitrary differentiable functions.

Theorem 4.2. Let α : I → G3 be a curve in the equiform differential geometry of the Galilean
space G3 with K, T ∈R. If α is a normal curve, then the following statement hold

λ(s) = c5 cos(T s) + c6 sin(T s) + c7scos(T s) + c8s sin(T s)−
1
T 2

η(s) = c1 cos(T s) + c2 sin(T s) + c3scos(T s) + c4s sin(T s)
where ci = const. {i = 1, ...,8} .

Proof. Let α : I → G3 be a curve in the equiform differential geometry of the Galilean
space G3. Since α is a normal curve, from definition 4.1 we have

α(s) = λ(s)N (s) + η(s)B(s). (4.9)

Differentiating 4.9 with respect to s and using the Frenet formulas, we have

T = (λ′ +λK− ηT )N + (η′ +λT + ηK)B (4.10)

Again differentiating this equation with respect to s we obtain

KT = N
{
λ′′ +2λ′K− 2η′T +λ(K′ +K−T 2) + η(−T ′ − 2KT )− 1

}
−B

{
η′′ +2λ′T +2η′K+λ(T ′ +2KT ) + η(K′ +K2 −T 2)

}
(4.11)
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According to the definition of the linear independent of vectors, we find that

K = 0, (4.12)

λ′′ +2λ′K− 2η′T +λ(K′ +K−T 2) + η(−T ′ − 2KT )− 1 = 0, (4.13)

η′′ +2λ′T +2η′K+λ(T ′ +2KT ) + η(K′ +K2 −T 2) = 0 (4.14)

Now, if we substitute 4.12 into 4.13 and 4.14, we get

λ′′ − 2η′T −λT 2 − ηT ′ − 1 = 0,

η′′ +2λ′T +λT ′ − ηT 2 = 0.

Since T ∈R, we get

λ′′ − 2η′T −λT 2 = 1,

η′′ +2λ′T − ηT 2 = 0

If this system of differential equations is solved, then we get

λ(s) = c5 cos(T s) + c6 sin(T s) + c7scos(T s) + c8s sin(T s)−
1
T 2

η(s) = c1 cos(T s) + c2 sin(T s) + c3scos(T s) + c4s sin(T s)
where ci = const. {i = 1, ...,8} and

c5 = − 2T
1+ T 2

(
c2 +

3+ T 2

1+ T 2 c3

)
c6 =

2T
1+ T 2

(
c1 +

1−T 2

1+ T 2 c4

)
c7 = − 2T

1+ T 2 c4

c8 = − 2T
1+ T 2 c3.

Definition 4.3. Let α : I → G3 be a curve in the equiform differential geometry of the
Galilean spaceG3. If the position vector of α always lies in its rectifying plane, then it’ s
called rectifying curve in G3. By this definition, position vector of curve α in equiform
geometry.

α(s) =ϖ(s)T (s) + ξ(s)B(s)
where ϖ(s) and ξ(s) are orbitrary differentiable functions [3].

Theorem 4.4. Let α : I → G3 be a curve in the equiform differential geometry of the Galilean
space G3. Then α is a rectifying curve in the equiform differential geometry of the Galilean
space G3 if and only if one the following four statements hold :

i ) The distance function h = ∥α(s)∥ satisfies

h2 =
∣∣∣s2 +2c1s+ c21 + c22

∣∣∣
for some orbitrary constants a, c1, c2.

ii ) The tangential component of the position vector of the curve α is given by

⟨α(s),T (s)⟩ = s+ c1,

where a is orbitrary constant.
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iii ) The normal component αN of the position vector of the curve α has constant length
and the distance function h is nonconstant.

iυ ) The equiform torsion of the curve α, T (s) ,0 and the binormal component of the
position vector of the curve α is constant i.e., ⟨α(s),B(s)⟩ = c2 is constant.

Proof. Let α : I → G3 be a curve in the equiform differential geometry of the Galilean
spaceG3. We suppose that α is a rectifiying curve in the equiform differential geometry
of the Galilean space G3. Then, the position vector α satisfies the equation

α(s) =ϖ(s)T (s) + ξ(s)B(s). (4.15)

Differentiating the equation 4.15 with respect to the arc length function s we have

T (ϖ′ +ϖK− 1) +N (ϖ − ξT ) +B(ξ ′ + ξK) = 0

According to the definition of the linear independent of vectors, we get

ϖ′ +ϖK− 1 = 0
ϖ − ξT = 0
ξ ′ + ξK = 0

Because of the solution of above differential equations does not exist, to solve the above
equation, let us take K = 0. Then we can be rewritten as the form

ϖ′(s)− 1 = 0
ϖ(s)− ξ(s)T (s) = 0

ξ ′(s) = 0

Hence, it follows that

ϖ(s) = s+ c1 (4.16)
ξ(s) = c2, (4.17)
ϖ(s) = ξ(s)T (s). (4.18)

Substituting 4.16 and 4.17 into 4.15, we can write the position vector α as follows

α(s) = (s+ c1)T (s) + c2B(s). (4.19)

Thus, from 4.19 we easily have

h2 = |⟨α,α⟩| =
∣∣∣s2 +2c1s+ c21 + c22

∣∣∣ .
This proves statement (i). Next, from 4.19 we find that tangential component of the
position vector as ⟨α(s),T (s)⟩ = s+ c1. This proves statement (ii). Since α is a rectifying
curve, from 4.19 the normal component αN of the position vector is given by

αN = ξ(s)B(s).

Hence, ∥∥∥αN
∥∥∥ = |ξ(s)| = |c2| , 0.

Therefore, statement (iii) is proved. And finally, from 4.19 we easily get ⟨α(s),B(s)⟩ =
c2 = const. and since the equiform torsion of the curve α, T (s) , 0, the statement (iυ )
is proved.
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Conversely, let us suppose that statement (i) or (ii) holds. Then there holds the
equation ⟨α(s),T (s)⟩ = s+c1, for orbitrary constant a. Differentiating this equation with
respect to the arc length function s and using the Frenet formulas,

⟨α(s),KT (s)⟩+ ⟨α(s),N (s)⟩ = 0.

Since K = 0, we get
⟨α(s),N (s)⟩ = 0.

Thus, α is a rectifying curve in the equiform geometry of the Galilean space G3. Next,
if statement (iii) holds, let us put α(s) = ξ(s)T (s) +αN . Then we find that⟨

αN ,αN
⟩
= ⟨α(s),α(s)⟩ = ⟨α(s),T (s)⟩2 + c3. (4.20)

where c3 is orbitrary constant. Differentiating this equation with respect to the arc
length function s and using K = 0 we get

⟨α(s),T (s)⟩ = (1+ ⟨α(s),N (s)⟩)⟨α(s),T (s)⟩ . (4.21)

Since the distance function h is nonconstant, we have ⟨α(s),T (s)⟩ , 0. Furthermore,
from 4.21 we obtain ⟨α(s),N (s)⟩ = 0. Whichmeans that the curve α is a rectifying curve.
Finally, if statement (iv) holds, then we have ⟨α(s),B(s)⟩ = c2 = constant. Differentiating
this equation with respect to s and using Frenet formulas, we get

−K⟨α(s),B(s)⟩ − T ⟨α(s),N (s)⟩ = 0.

Since K(s) = 0 and T (s) , 0, we have ⟨α(s),N (s)⟩ = 0, we easily obtain that the curve α
is a rectifying curve.
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