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Abstract. In this paper, we apply modified absolute Nörlund means with weights(Das
[15]) to study absolute Nörlund summability of Fourier series with multipliers and
obtain some necessary and sufficient conditions, imposed upon the generating function
of Fourier series, as well as best possible absolute summability multipliers in certain
sense. As a consequence, we not only get some new results but some results, which
improve earlier results, have also been obtained.

1. DEFINITIONS AND NOTATIONS

Let (pn) be a sequence of constants such that

Pn = p0 + p1 + p2 + ...+ pn , 0, for n ≥ 0

and let λ = (λn) be a given positive sequence. Then modified Nörlund mean with
weight λ = (λn) of

∑∞
n=0ωn is defined by

dn =
1

Pnλn

n∑
k=0

pn−kλkωk . (1.1)

If the series
∑∞

n=0 dn converges to s, we say that
∑∞

n=0ωn is summable by modified
Nörlund mean with weight λ = (λn) or summable (N ′ ,pn,λn) to s. And if

∞∑
n=0

|dn| <∞ (1.2)

then
∑∞

n=0ωn is said to be absolutely summable by modified Nörlund mean of weight
λ = (λn) or summable |N ′ ,pn,λn|. For this, see Das [15].
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It follows from Das([15]; Lemma 4) that if pn > 0 and (λn) is non decreasing then
(N ′ ,pn,λn) is absolutely conservative provided

(i)
∞∑
n=k

1
npn

=O

(
1
λk

)
(ii) (n+1)pn =O(Pn). (1.3)

Further if, (pn) satisfies Kaluza condition:

M = {pn > 0 : pn+1pn−1 ≥ pn
2 and pn+1 ≤ pn}, (1.4)

then (Das[14])

|N,pn| ∼ |N ′ ,pn,n| (1.5)

In 1979, Bosanquet and Das [2] have shown that a Nörlund method is identical with
its modified Nörlund mean of weight λn = n if and only if Nörlund matrix is a Cesàro
matrix. In 1980, Das and Mohapatra [17] have studied a special case of (N,pn) method,
which they called the generalized harmonic-Cesàro method (Z,α,β) and is generated
by (pn) : pn = A

α−1,β
n , determined by the identity

(1− z)−α−1{loga/(1− z)}β =
∞∑
n=0

A
α,β
n zn(|z| < 1), (1.6)

where α,β are real and a > 2 is a fixed constant. Thus, in the case β = 0, the method
(Z,α,β) reduces to Cesàro method (C,α) and in the case α = 0,β > 0, it is equivalent to
the generalized harmonic summability method (Das and Mohapatra [16]) which was
first studied by Iyenger [22] for positive integer β by considering the following identity:

{1
z
log

1
1− z

}β = {
∞∑
n=0

zn

n+1
}β ≡

∞∑
n=0

c
β
nz

n (1.7)

for β > 0, |z| ≤ 1 and z , 1, where

c
β
n ∼

β(logn)β−1

n
= q

β
n(suppose). (1.8)

We write |N,q
β
n |(β > 0) for the absolute generalized harmonic summability method and

|Z ′ ,α,β| for modified absolute generalized harmonic-Cesàro method associated with
the absolute generalized harmonic-Cesàro method |Z,α,β| , which has been studied by
Das and Mohapatra [18].
For real α and β, the following estimates are known ([33],p.192):

A
α,β
n =

n∑
m=0

A
α−1,β
n (1.9)

A
α,β
n ∼ nα

Γ (α +1)
(logn)β(α , −1,−2,−3, ....) (1.10)

A
α,β
n ∼ β(−1)α−1Γ (|α|)nα(logn)β−1(α = −1,−2,−3, ....). (1.11)
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Let f ∈ L2π, the space of all real valued, 2π− periodic and L-integrable Functions over
[−π,π]. Then the Fourier series of f at a point x is given by

1
2
a0 +

∞∑
n=1

(ancosnx+ bnsinnx) ≡
∞∑
n=0

An(x), (1.12)

where an and bn are the Fourier coefficients of f .
We use the following notations throughout the paper for fixed real number x:

ϕ(t) =
1
2
{f (x+ t) + f (x − t)} (1.13)

R(t) = ϕ(t)−ϕ1(t), where ϕ1(t) =
1
t

∫ t

0
ϕ(u)du (1.14)

Hn(t) = b(t)
sin nt
nt

+
∫ π

t

sin nu
nu

db(u),b(t) = ty(t−1), (1.15)

where y(t−1) is defined in 0 < t ≤ π.We also write for any sequence (fn) and h = 1,2,3....

∆0fn = fn,∆fn = fn − fn+1,∆hfn = ∆(∆h−1fn) (1.16)

∇0fn = fn,∇fn = fn − fn−1,∇hfn = ∇(∇h−1fn). (1.17)

T =
[
k
t

]
, the integral part, where 0 < t ≤ π and k is a positive constant taken for the

convenience in the analysis and not necessarily the same at each occurrence. And for
positive integer n, we write yn for y(n).

2. THEOREMS AND COMMENTS

The main object is to apply modified absolute Nörlund summability method
|N ′ ,pn,λn| with weight λ = (λn) to study absolute summability |N,pn| -factor problems
in Fourier series. We observe that the application of modified Nörlund mean with
weight λ = (λn) not only helps us to obtain simple conditions on pn but it also provide
simpler proof. In this paper, we study, as special cases, the following series:

∞∑
n=1

nαAn(x),
∞∑
n=1

nαAn(x)
log(n+1)

and
∞∑
n=1

An(x)
logδ(n+1)

and investigate some new results. In some of the cases, we are in a position to inves-
tigate best possible conditions imposed upon the generating functions of the Fourier
series and best possible absolute summability factors in certain sense. In this context,
we first state the following known result:
Theorem A. Let, for 0 ≤ α < 1, ∫ π

0
t−α |dϕ(t)| <∞. (2.18)

Then
∞∑
n=1

nαAn(x) ∈ |C,η| (0 ≤ α < η < 1). (2.19)



80 Prem Chandra

The case α = 0 of Theorem A was first obtained by Bosanquet [1] and later on it
was generalized by a number of workers such as Pati([30], [31]), Kanno [23], Dikshit
[21] and Kuttner and Sahney [24] who replaced |C,η| - method by absolute Nörlund
summability method and matrix summability method, respectively.
The case 0 < α < 1 of Theorem A was first obtained by Mohanty [27] and was
generalized by using |N,pn| and absolute matrix summability method by Kanno [23]
and Chandra and Barve [11], respectively. We observe that retaining the condition
(2.18), various conditions on the generating sequence pnof |N,pn|-method have been
obtained to study

∑∞
n=1n

αAn(x) but we did not see any one who obtained a different set
of condition or conditions than the one given in (2.18) to ensure absolute summability
of

∑∞
n=1n

αAn(x),0 ≤ α < 1 by a method weaker than |C,η| (0 < α < η < 1). In this paper,
we make such an effort by using absolute generalized harmonic-Cesàro summability
method (Das and Mohapatra [17]) and modified absolute Nörlund summability
method with weights(Das [15]). To achieve this goal, we first prove

Theorem 2.1. Let (pn) ∈M and let monotonic function y(t−1), defined in 0 < t ≤ π, satisfy
the following conditions:

tcy(t−1) increases with t for some c in 0 < c < 1 (2.20)

t
d
dt

y(t−1) =O{y(t−1)}, t→ 0+ (2.21)

t−1
d
dt

y(t−1) =O{y(t−1)} decreases as t increases (2.22)

If, for g(t) = R(t)/y(t−1), ∫ π

0
log

k
t
|dg(t)| <∞. (2.23)

Then for the truth of
∞∑
n=1

An(x)y
−1
n ∈ |N,pn| (2.24)

it is sufficient that

g(0+) = 0 (2.25)

should hold provided

yT PT

∞∑
n=T

1
nPnyn

=O(log
k
t
), (2.26)

uniformly in 0 < t < π.

We first use Theorem 1 to obtain the following new and interesting result under
stronger condition than (2.18) for 0 < α < 1:

Theorem 2.2. Let, for 0 < α < 1 and β > 1,pn = A
α−1,β
n and let g(t) = t−αR(t). Then, if

(2.26) holds, it is necessary and sufficient, for
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∞∑
n=1

nαAn(x) ∈ |Z,α,β|, (2.27)

that (2.25) should hold. Further (2.23) cannot be replaced∫ π

0
logσ

k
t
|dg(t)| <∞ (0 < σ < 1) (2.28)

and multipliers (nα) in (2.27) cannot be replaced by

(nαlogϵ(n+1)) for 0 < α < 1 and ϵ > 0. (2.29)

Also the result (2.27) under the hypotheses (2.23) and (2.25) is incomparable with
Theorem A for 0 < α < 1.

We now give the following new result under conditions weaker than (2.18) for
0 < α < 1:

Theorem 2.3. Let, for

g(t) = t−αlog−1
k
t
R(t) (0 < α < 1), (2.30)

(2.23) hold. Then in order that
∞∑
n=1

nαAn(x)
log(n+1

∈ |Z,α,β| (0 < α < 1,β > 0) (2.31)

should hold, it is necessary and sufficient that (2.25) should hold. Also (2.23) cannot be
replaced by (2.28) and multipliers (nαlog−1(n+1)) in (2.31) cannot be replaced by

(nαlogϵ−1(n+1)) (ϵ > 0). (2.32)

We now obtain the following result for the absolute generalized harmonic summability

method |N,q
β
n |, where q

β
n = β(logn)β−1

n (β > 0).

Theorem 2.4. Let β > 0 and δ be real such that β + δ > 1 and let, for

g(t) = R(t)log−δ
k
t
, (2.33)

(2.23) hold. Then in order that
∞∑
n=1

An(x)
logδ(n+1

∈ |N,q
β
n | (β > 0) (2.34)

should hold it is necessary and sufficient that (2.25) should hold. Further, (2.23) is best
possible in the sense that it cannot be replaced by the weaker condition (2.28). Also the
multipliers 1

logδ(n+1)
in (2.34) cannot be replaced by(

logϵ(n+1)logδ(n+1)
)
(ϵ > 0). (2.35)

Remark. Theorem 2.4 for δ ≤ 2 was earlier proved in [10].
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3. ESTIMATES

Let y(t−1) satisfy (2.20), (2.21) and (2.22) and let (pn) be non-negative and non-
increasing. Then we use the following estimates for 0 < t < π in the proof of the
theorems:

Hn(t) = b(t)
sin nt
nt

+O
{
b
(1
n

)}
(3.36)

Hn(t) = b(t)
sin nt
nt

+O{n−2t−2 b(t)} (3.37)

n∑
m=1

y−1m pn−m =O{Pny−1n }. (3.38)

For the proof of (3.36) and (3.37) proceed as in Chandra [7].

Proof. It is known that (yn) is monotonic, therefore if (yn) is non-increasing then the
proof of (3.38) is trivial. And if (yn) is non-decreasing, we write, for N = [n/2],

n∑
m=1

y−1m pn−m =
N∑

m=1

y−1m pn−m +
n∑

m=N+1

y−1m pn−m

≤ pn−N

N∑
m=1

y−1m + y−1N

n∑
m=0

pn−m

=O{Pny−1n },
by using (2.20). �

4. LEMMAS

We use the following lemmas in the proof of the theorems:

Lemma 4.1. (Das[15]; Theorem 4). Suppose λn > 0 and increasing to∞ with n. Let h be a
non-negative integer and let

(i) ∇hpn ∈M and (ii) nh+1λn∆
h+1

(
1
λn

)
(4.39)

In the case h = 0, further assume that
∞∑
n=k

1
nλn

=O (λk) . (4.40)

Then

|N ′ ,pn,λn| =⇒ |N,pn|. (4.41)

Lemma 4.2. Let pn ≥ 0 and let (pn) be non-increasing. If y(t−1) satisfies (2.20), then

|
n∑

m=1

my−1m pn−mexp(imt)| =O{ny−1n PT }, uniformly in 0 < t < π. (4.42)

By (2.20), it follows that (my−1m ) is increasing. Therefore for the proof of Lemma 4.2, we first
apply Abel’s lemma for (my−1m ) and then use Lemma 5.11 of McFadden [26].
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Lemma 4.3. For real β and α > −1, the following inclusion is strict:

|Z,α,β| ⊂ |C,η| (η > α). (4.43)

For it’s proof, see Das and Mohapatra ([16],[17],[19]).

Lemma 4.4. Let r be real and 0 < α < 1. Then there exist B(1)
n ,B

(2)
n ,B

(3)
n and a positive

constant d, depending upon α, such that∫ π

0

sin nt
nt

tαlogr
k
t
dt = B

(1)
n +B

(2)
n +B

(3)
n , (4.44)

where B(1)
n > 0 and B

(2)
n ≥ 0 and that

B
(1)
n ∼ d n−1−αlogrn (for real r) (4.45)

and

B
(3)
n =O{n−1−αlogr−1n} (for real r , 0) (4.46)

B
(3)
n =O{n−2} (for real r=0). (4.47)

Proof. Denote the integral in (4.44) by I and split up into sub-integrals
∫ π

2n
0 and

∫ π
π
2n
.

Then I =
∫ π

2n
0 +

∫ π
π
2n

= B
(1)
n + J , say, where B(1)

n > 0.

By using the transformation: nt = θ, we get

B
(1)
n = n−1−αlogrn

∫ π
2
0 sn(θ)dθ,

where

sn(θ) = {1+ log−1nlog
k
θ
}rθα−1sinθ =O(θα)

,θα ∈ L[0, π2 ] and sn(θ)→ θα−1sinθ, as n→∞.
Therefore, by Lebesgue dominated convergence theorem

B
(1)
n → n−1−αlogrn

∫ π
2

0
θα−1sn(θ)dθ as n→∞

.
Hence we get (4.45), where

d =
∫ π

2

0
θα−1sn(θ)dθ > 0. (4.48)

Integrating by parts and denoting the first integral by B
(2)
n , we get

J = α−1
n2

∫ π
π
2n
tα−2logr kt cos nt dt −n

−2πα−1logr kπ cos nπ −
r
n2

∫ π
π
2n
tα−2logr−1 k

t cos nt dt

= B
(2)
n +B

(3)
n , say,

where for real r

B
(3)
n =O(n−2)− r

n2

∫ π

π
2n

tα−2logr−1
k
t
cos nt dt

=O(n−2) +O{|r |n−1−αlogr−1n}, (4.49)
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by using the second mean value theorem. From (4.49), we get (4.46) and (4.47). Once
again applying the second mean value theorem, we get

B
(2)
n = (1−α)(log 2kn

π
)r (1− sin nθ′) ≥ 0, (4.50)

where π
2n < θ′ < π. This completes the proof of the lemma. �

Lemma 4.5. Let g(t) = t−αR(t). Then there exists an f ∈ L2π for which (2.25) and (2.28)
hold but the series in (2.27) at x=0 diverges properly.

Proof. We take an even function f ∈ L2π. Then for x = 0,ϕ(t) = f (t).
We now define:

f (t) = tαlog−1
k
t
, for 0 < α < 1 and 0 ≤ α ≤ π. (4.51)

Then by using (1.14) and integrating by parts, we get

R(t) = tαlog−1
k
t
− 1
t

∫ t

0
uαlog−1

k
u
du

=
1

1+α

{
αtαlog−1

k
t
+
1
t

∫ t

0
uαlog−2

k
u
du

}
.

Hence
g(t) = t−αR(t) = 1

1+α

{
αlog−1 k

t + t−α−1
∫ t

0 u
αlog−2 k

udu
}

and g(0+) = 0, i.e. (2.25) holds. By using the value of g(t), as calculated above, it may
be shown that (2.28) holds.
We now show that

∑∞
n=1n

αAn(0) diverges to −∞. We have

An(0) =
2
π

∫ π

0
tαlog−1

k
t
cos nt dt

= − 2
π
α

∫ π

0

sin nt
nt

tαlog−1
k
t
dt − 2

π

∫ π

0

sin nt
nt

tαlog−2
k
t
dt

= − 2
π
α un −

2
π
vn, say. (4.52)

Then ([8]; Lemma 6)

vn =O(1)n−1−αlog−2n (4.53)

and, by Lemma 4.4

un = B
(1)
n +B

(2)
n +B

(3)
n , (4.54)

where B(1)
n ≥ 0,

B
(1)
n ∼ d n−1−αlog−1n, (4.55)

d is a positive constant depending upon α, and

B
(3)
n =O{n−1−αlog−2n}. (4.56)
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However, by (4.53) and (4.56), it follows that
∞∑
n=1

|nα(νn +B
(3)
n )| <∞. (4.57)

And, in view of (4.52) through (4.57) except (4.55), it is sufficient for the proof of the
lemma to show that

∞∑
n=1

nαB
(1)
n diverges to +∞, (4.58)

which follows by using (4.55). This completes the proof of the lemma. �

Lemma 4.6. Let ϕ(0+) = 0. Then, for R(t) as defined in (1.14), the following hold for α > 0:

t−αϕ(t) ∈ BV [0,π] ⇐⇒ t−αR(t) ∈ BV [0,π] (4.59)

t−α−1ϕ(t) ∈ L[0,π] ⇐⇒ t−α−1R(t) ∈ L[0,π]. (4.60)

Proof. For the proof of (4.59), see Chandra ([5]; Lemma 4). And for the proof of (4.60),
we ([5],p.76) use the following inversion formula:

ϕ(t) = R(t) +
∫ t

0
u−1R(u) du (4.61)

to get ∫ π

0
t−α−1|ϕ(t)| dt ≤

(
1+

1
α

)∫ π

0
t−α−1|R(t)| dt (4.62)

≤
(
1+

2
α

)∫ π

0
t−α−1|ϕ(t)| dt,

which gives (4.60). �

5. PROOF OF THE THEOREMS

PROOF OF THEOREM 2.1 We([4];Theorem 1) have

An(x) =
2
π

∫ π

0
R(t)(cosnt − sin nt

nt
) dt.

Then, for g(t) = R(t)/y(t−1) and b(t) = ty(t−1), we have

An(x) =
2
π

∫ π

0
g(t)b(t)

d
dt

( sin nt
nt

)
)
dt.

An(x) =
2
π
g(0+)

∫ π

0
b(t)

d
dt

( sin nt
nt

)
)
dt +

2
π

∫ π

0
dg(t)

∫ π

t
b(u)

d
dt

( sin nt
nt

)
)
du.

By using (2.20) and the integration by parts, we get

An(x) = −
2
π
g(0+)

∫ π

0

( sin nt
nt

)
)
db(t) dt − 2

π

∫ π

0
Hn(t)dg(t)

= − 2
π
(αn + βn), say.
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By (2.25), αn = 0, for all n ≥ 1 therefore by applying Lemma 4.1 for h = 0 and λn = n2,
it will be sufficient for the proof of (2.24) to prove that

∞∑
n=1

βny
−1
n ∈ |N ′ ,pn,n2|, (5.63)

whenever (2.26) holds. However, by (1.1) and (1.2), (5.63) holds if and only if
∞∑
n=1

1
n2Pn

|
n∑

m=1

m2pn−my
−1
m

∫ π

0
Hm(t)dg(t)| <∞. (5.64)

Now, in view of (2.23), it is sufficient for the proof of (5.64) to show that∑
=
∞∑
n=1

1
n2Pn

|
n∑

m=1

m2pn−my
−1
m Hm(t)| =O

(
log

k
t

)
, (5.65)

uniformly in 0 < t < π. We write∑
=

T∑
n=1

+
∞∑
T+1

=
∑
1

+
∑
2

, say. (5.66)

By using (3.36) and |sinmt| ≤mt , we get∑
1

=O(1)b(t)
T∑

n=1

1
n2Pn

n∑
m=1

m2pn−my
−1
m +O(1)

T∑
n=1

1
n2Pn

n∑
m=1

mpn−m

=O

{
log

(
k
t

)}
, (5.67)

uniformly in 0 < t < π, by (2.20). And, by(3.37), (3.38) and Lemma 4.2,∑
2

= y(t−1)
∞∑

n=T+1

1
n2Pn

|
n∑

m=1

mpn−my
−1
m sin mt|+O(1)t−1y(t−1)

∞∑
n=T+1

1
n2Pn

n∑
m=1

pn−my
−1
m

=O(1)yT PT
∞∑

n=T

1
nPnyn

+O(T yT )
∞∑

n=T

n−2y−1n

=O

{
log

(
k
t

)}
(5.68)

uniformly in 0 < t < π, by (2.26) and (2.20).
Collecting (5.65) through (5.68), we get (5.64) and this completes the proof.

PROOF OF THEOREM 2.2. In Theorem 1, suppose for 0 < α < 1

(i) y(t−1) = tα and (ii) pn =
nα−1

Γ (α)
(logn)β(β > 1). (5.69)

Then the conditions (2.20), (2.21) and (2.22) are satisfied and yn = n−α , yT = T −α .
Also for large n,

(pn) ∈M and A
α−1,β
n ∼ pn, (5.70)
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so that we can have

|Z,α,β| ∼ |N,pn|. (5.71)

Therefore, for the proof of (2.27), we only require to verify (2.26), where y(t−1) and pn
are defined by (5.69). We observe that (see (1.9))

PT =O{T α(logT )β}
and since (pn) is decreasing,

1
Pn

<
Γ (α)

nα(logn)β
. (5.72)

Now using the estimates obtained for yn, yT , PT andP −1n in (2.26), we get the required
proof of (2.27).

(i) The condition (2.25) , i.e. g(0+) = 0 is necessary. For g(t) = t−αR(t),
we have from Theorem 2.1,

αn =
2
π
(1 +α)g(0+)

∫ π

0

sin nt
nt

tα dt (5.73)

and by Lemma 4, ∫ π

0

sin nt
nt

tα dt = B
(1)
n +B

(2)
n +O(n−2) (5.74)

where B(2)
n ≥ and B

(1)
n > 0 is such that for positive constant d = d(α),

B
(1)
n ∼ dn−1−α . (5.75)

Suppose g(0+) , 0, then for
∞∑
n=1

nααn ∈ |Z,α,β| (0 < α < 1,β > 1) (5.76)

it is necessary that
∞∑
n=1

nαB
(1)
n ∈ |Z,α,β| (0 < α < 1,β > 1) (5.77)

which, by (5.51) , does not hold. Thus for the truth of (5.52), it is necessary that (2.25)
should hold.

(ii) The proof that (2.23) cannot be replaced by (2.28) follows from Lemma 4.5.

(iii) For the proof that multipliers (nα) in (2.27) cannot be replaced by the sequence
of multipliers given in (2.29), we consider an even function f ∈ L2π and the point x = 0.
We further define :

f (t) = tαlog−1−ϵ
k
t
(0 ≤ t ≤ π),
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where ϵ > 0, and proceed as in Lemma 4.5 to prove that
∞∑
n=1

nαlogϵ(n+1)An(0) = −∞,

which gives the required conclusion.

(iv) We now show that Theorem 2.2 is incomparable with Theorem A for 0 < α < 1.

(a) It follows from Lemma 4.3 that the summability method |C,η| (η > α) used in
Theorem A is stronger than |Z,α,β|.
(b) We observe that for Fourier series the condition (2.18) is equivalent to

(i)
∫ π

0
t−α |dϕ(t)| <∞ and (ii) ϕ(0+) = 0. (5.78)

However ([3];Lemma 7), (5.78) and (2.23) with (2.25) are equivalent to

(i) t−αϕ(t) ∈ BV [0,π] and (ii) t−α−1ϕ(t) ∈ L[0,π]. (5.79)

and

(i) t−αR(t)log
k
t
∈ BV [0,π] and (ii) t−α−1R(t) ∈ L[0,π], (5.80)

respectively. Now , it is clear from Lemma 4.6 that (5.80), i.e. (2.23) with (2.25)
is stronger than (2.18). In view of (a) and (b) , the result (2.27) of Theorem 2.2 is
incomparable with (2.19) of Theorem A for 0 < α < 1.
This completes the proof of Theorem 2.2.

PROOF OF THEOREM 2.3. Letting y(t−1) = tαlog k
t and pn = A

α−1,β
n for 0 < α < 1

and β > 0 in Theorem 2.1 and proceeding as in the proof of Theorem 2.2, we can get a
proof of the theorem.

PROOF OF THEOREM 2.4.

(i) In Theorem 2.1, let pn = q
β
n = β(log(n+1))β

n+1 (β > 0) and y(t−1) = logδ k
t for real values

of δ. Then we observe that conditions (2.20) through (2.22) and (2.26) are satisfied.
Hence sufficiency of (2.25) follows from Theorem 2.1.

(ii) For the necessity of (2.25), see Chandra([7], pp. 218-219).

(iii) For the proof that (2.23) cannot be replaced by (2.28), see Lemma 7 of Chandra
[7].

(iv) It follows from Lemma 8 of Chandra [8] that there exists f ∈ L2π for which (2.23)
and (2.25) hold for all real values of δ but the series

∞∑
n=1

An(x)
logδ−ϵ(n+1)

(0 < ϵ < 1) (5.81)
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at x = 0 diverges properly to −∞. Hence the series in (5.19) is not summable by any
absolutely conservative method.
This completes the proof of Theorem 2.4.

6. COROLLARIES

In this section, we consider some corollaries of Theorem 2.4 and compare with some
existing results. For this, we first observe that for g(t) = R(t)log−δ k

t , where δ is real,
(2.23) with (2.25) is equivalent([28]) to

(i) R(t)log1−δ
k
t
∈ BV [0,π] and (ii) t−1log−δ

k
t
R(t) ∈ L[0,π], (6.82)

for all real values of δ. For δ = 0, we get the following result from Theorem 2.4:

Corollary 1. Let 0 < σ ≤ 1.Then

(i)
∫ π

0

(
log

k
t

)σ
|dR(t)| <∞ (ii) R(0+) = 0 (6.83)

is sufficient for
∞∑
n=1

An(x) ∈ |N,q
β
n | (β > 1) (6.84)

if and only if σ = 1. Further, R(0+) = 0 is necessary for (6.84). Also
∞∑
n=1

An(x)log
ϵ(n+1) < |N,q

β
n | (β > 1), for ϵ > 0

REMARK 1. In Theorem A, it has been shown that
∞∑
n=1

An(x) ∈ |C,η| (η > 0) (6.85)

and it follows from Lemma 4.3 that the inclusion :

|N,q
β
n | ∈ |C,η| (η > 0,β > 0) (6.86)

is strict. Hence the summability method |N,q
β
n | (β > 0) used in Corollary 1 is weaker

than the one used in Theorem A for α = 0. However, (6.85) was obtained in Theorem
A under the condition : ϕ(t) ∈ [0,π] , which is equivalent([6]; Corollary 2) to

(i) R(t) ∈ BV [0,π] (ii) t−1R(t) ∈ L[0,2π]. (6.87)

Hence, it follows from (6.82) with δ = 0 that (6.83) with σ = 1 is stronger than (6.87).
Therefore Corollary 1 is incomparable with Theorem A for α = 0. Thus Corollary 1
yields a new result.
Among the other results, Kanno [23] obtained the following results:

Theorem B. If, for δ > 0, ∫ π

0
logδ

k
t
|dϕ(t)| <∞. (6.88)
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Then
∞∑
n=1

An(x)log
δ(n+1) ∈ |C,η| (0 < η < 1). (6.89)

The case δ = 1 is due to Mohanty [29].

Theorem C. Let 0 < β ≤ 1 and 0 < δ ≤ 1 and let∫ π

0
log1−δ

k
t
|dϕ(t)| <∞. (6.90)

Then
∞∑
n=1

An(x)log
−δ(n+1) ∈ |N,q

β
n | (β + δ > 1). (6.91)

The case δ = 1 = β is due to Varshney [32] and the case : β = 1,0 < δ ≤ 1 of Theorem C
is due to Lal [25].
In context of Theorem B, we deduce the following result from Theorem 2.4 which
provides necessary and sufficient conditions:

Corollary 2. Let 0 < σ ≤ 1,δ > 0 and β > 0. Then, for g(t) = R(t)logδ k
t ,

(i)
∫ π

0

(
log

k
t

)σ
|dg(t)| <∞. (ii)g(0+) = 0 (6.92)

is sufficient for
∞∑
n=1

An(x)log
δ(n+1) ∈ |N,q

β
n | (β + δ > 1). (6.93)

if and only if σ = 1. Also g(0+) = 0 is necessary for (6.93) and if ϵ > 0
∞∑
n=1

An(x)log
δ+ϵ(n+1) < |N,q

β
n | (β + δ > 1). (6.94)

REMARK 2. It is clear from (6.86) that the summability method |N,q
β
n | (β > 0), used in

Corollary 2, is weaker than the one used in Theorem B.
And, on the otherhand, condition (6.92) with δ = 1 is stronger than (6.88).
Hence, Corollary 2 is incomparable with Theorem B.

REMARK 3.In connection with Theorem C, we make the following observations:
(i) The condition (6.90) for δ = 1 reduces to ϕ(t) ∈ [0,π] which holds if and only if (6.87)
holds and is stronger than (6.82) with δ = 1. Hence, Theorem 2.4 for δ = 1 improves
Theorem C.
(ii) For the case 0 < δ < 1 of Theorem C, we may assume that ϕ(0+) = 0 in (6.90)
without loss of generality. Then (6.90) with ϕ(0+) = 0 holds if and only if ([28])

(i) ϕ(t)log1−δ
k
t
∈ BV [0,π] and t−1log−δ

k
t
ϕ(t) ∈ L[0,π] (6.95)

However, it is known ([9]) that (6.95)(i) is stronger than (2.23) with (2.25), where
g(t) = R(t)log−δ k

t . Hence, once again, Theorem 2.4 not only yields a better result than
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Theorem C but it also provides best possible conditions, imposed upon the generating
functions of Fourier series, and multipliers for the summability method.

Finally, we consider the following result due to Chandra and Mohapatra [12]:

Theorem D. Let δ >,0 and let

ϕ(t)log−δ
k
t
∈ BV [0,π]. (6.96)

Then
∞∑
n=1

An(x)
(log(n+1))1+δ

∈ |C,0|. (6.97)

This is an improved version of a theorem due to Chang [13].
We obtain the following result from Theorems 2.1 and 2.4, which improves
Theorem D:

Corollary 3. Let δ > 0 and let, for g(t) = R(t)log−1−δ k
t ,∫ π

0
log

k
t
|dg(t)| <∞. (6.98)

Then in order that (6.97) should hold, it is necessary and sufficient that

g(0+) = 0. (6.99)

Also (6.98) cannot be replaced by∫ π

0

(
log

k
t

)σ
|dg(t)| <∞ (0 < σ < 1). (6.100)

Further, in (6.97), (1 + δ) cannot be replaced by 1+ δ − ϵ for ϵ > 0.
Proof. For the proof of its sufficiency part we use Theorem 2.1 for

pn = rn (0 < r < 1),n ≥ 0 and y(t−1) = log1+δ
k
t
(δ > 0). (6.101)

Then Pn = O(1) and the conditions (2.20) through (2.22) and (2.26) are satisfied.
Hence sufficiency of (6.99) for (6.97) follows from Theorem 2.1 by appealing to
an ineffectiveness result on absolute Nörlund summability of Dikshit [20]. For the
remaining part of the proof, one may proceed as in Theorem 2.4.
Now, for the proof that (6.98) with (6.99) is weaker than (6.96) for δ > 0, see
Chandra([9],[10]).
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