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Abstract. In this paper a generalized product of summability is introduced in order
to make an advanced study on the special topic of summability. In addition, employing
that product we establish a new theorem regarding to summability of Fourier series.

1. Introduction and Known Results

Let f (t) be a periodic function with period 2π and integrable over the interval (−π,π)
in the sense of Lebesgue. Let

f (t) ∼ a0
2

+
∞∑
n=1

(an cosnt + bn sinnt) (1.1)

be its Fourier series.
For two sequences of real or complex numbers p = {pn} and q = {qn}, let

Pn = p0 + p1 + p2 + · · ·+ pn =
n∑

v=0

pv , for all n,

Qn = q0 + q1 + q2 + · · ·+ qn =
n∑

v=0

qv , for all n,

and let the convolution (p ∗ q)n be defined by

Rn := (p ∗ q)n :=
n∑

v=0

pvqn−v .
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Let
∑∞

n=0 cn be a given infinite series with the sequence of its n−th partial sums {sn}. We
write

t
p,q
n =

1
Rn

n∑
v=0

pn−vqvsv .

If Rn , 0 for all n, the generalized Nörlund transform of the sequence {sn} is the
sequence {tp,qn }.

Throughout this paper we shall writewn = O(zn) if zn > 0, (n = 0,1,2, . . . ), and if there
exists a constant K > 0 such that wn

zn
≤ K , and we write wn = o(zn) if

wn
zn
→ 0 as n→∞.

If tp,qn → s as n→∞, then the series
∑∞

n=0 cn or {sn} is summable to s by generalized
Nörlund method (see Borwein [2]) and is denoted by

sn 7−→ s(N,p,q).

The necessary and sufficient conditions for (N,p,q) method to be regular are
n∑

v=0

|pn−vqv | = O(|Rn|)

and pn−v = o(|Rn|), as n→∞ for every fixed k ≥ 0, for which qv , 0.
If

Er
n =

1
(1+ r)n

n∑
v=0

(
n
v

)
rn−vsv → s, (r > 0)

then the series
∑∞

n=0 cn is said to be (E,r) summable to s (see Hardy [3]).
Let A := (an,v)n,v∈N∪{0} be a positive lower triangular matrix, i.e. an,v > 0 for

0 ≤ v ≤ n, and an,v = 0 for v > n, such that
∑n

v=0 an,v = 1. Further, let us consider
the transformation

Tn,A(E,r)(S) =
n∑

v=0

an,v
(1 + r)v

v∑
j=0

(
v
j

)
rv−jsj

of the sequence S = {sj }.
If Tn,A(E,r)(S) → s, as n → ∞, then we say that the series

∑∞
n=0 cn or the sequence

S = {sn} is summable to s by (A)(E,r) summability.
In the special case, if we take an,v = pn−vqv

Rn
and r = 1, then (A)(E,r) summability

exactly coincides to (N,p,q)(E,1) summability employed in [5].
Despite of a good amount of work that is known regarding to ordinary summability

of Fourier series, recently the authors of the paper [5] established a new theorem on
(N,p,q)(E,1) summability of Fourier series.

Following, before we recall their result, in which several typos has been occured, we
shall write some notations:

ϕx(t) =
1
2
[f (x+ t) + f (x − t)− 2f (x)], Φx(t) =

∫ t

0
|ϕx(u)|du,

τ =
[1
t

]
, R

(1
t

)
= Rτ , Rn = R(n),

and

Kn(t) =
1

2πRn

n∑
v=0

pn−vqv
cosk( t2 )cos(k +1)( t2 )

sin( t2 )
,
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where t ∈ (−π,π) and x is a fixed value of t.

Theorem 1.1 ([5]). Let {pn} and {qn} be positive monotonic non-increasing sequences of real
numbers such that

Rn =
n∑

v=0

pkqn−v →∞, as n→∞.

Let β(t) be a positive and non-decreasing function of t. If

Φx(t) =
∫ t

0
|ϕ(u)|du = o

(
t

β(1/t)

)
, as t→ +0,

β(n)→∞, as n→∞,

then a sufficient condition that the Fourier series (1.1) to be summable (N,p,q)(E,1) to f (t)
at the point t = x is ∫ n

1

R(u)
uβ(u)

du = O (Rn) , as n→∞.

The main aim of this paper is to find the sufficient conditions under which the
Fourier series (1.1) of the function f (t) is (A)(E,r) summable at the point t = x;
t ∈ (−π,π).

As is showed in [4] the infinite series

1− 4
∞∑
n=1

(−3)n−1

is not (E,1) summable nor (C,1) summable. However, it is proved that the above
series is (C,1)(E,1) summable. Therefore the product summability (C,1)(E,1) is more
powerful than the individual methods (C,1) and (E,1). Thus, (C,1)(E,1) mean (as
particular case of (A)(E,r) mean) gives some more general results for a wider class
of Fourier series than the individual means (C,1) and (E,1).

To achieve the aim of this paper first we need to prove some helpful statements
given in next section.

2. Auxiliary Lemmas

At first, we denote

A(1/t) =
τ∑

v=0

an,v , A(n) = 1,

and

Gn(t) =
n∑

v=0

an,v
(1 + r)v

v∑
j=0

(
v
j

)
rv−j

sin(2j +1) t2
sin

(
t
2

) =ℑ
n∑

v=0

an,v
e
it
2 (r + eit)v

(1 + r)v sin(t/2)
,

whereℑ(z) denotes the imaginary part of z.
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Lemma 2.1 (Abel’s Lemma, [1], page 18). Let {ak}∞k=0, {bk}
∞
k=0 two real sequences and

Vk =
∑n

i=0 bi . If ak ≥ 0, ak ↓, |Vk | ≤M for m ≤ k ≤ n, and M > 0, then∣∣∣∣∣∣ n∑
k=m

akbk

∣∣∣∣∣∣ ≤ 2amM.

Lemma 2.2. Let 0 ≤ t ≤ 1/n. Then the following estimation

|Gn(t)| = O (n) ,

holds true.

Proof. Obviously, we have

|Gn(t)| =

∣∣∣∣∣∣∣∣
n∑

v=0

an,v
(1 + r)v

v∑
j=0

(
v
j

)
rv−j

sin(2j +1) t2
sin

(
t
2

)
∣∣∣∣∣∣∣∣

≤
n∑

v=0

an,v
(1 + r)v

v∑
j=0

(
v
j

)
rv−j

(2j +1)
∣∣∣sin t

2

∣∣∣∣∣∣sin t
2

∣∣∣
≤

n∑
v=0

an,v
(1 + r)v

(2v +1)
v∑

j=0

(
v
j

)
rv−j

≤
n∑

v=0

2(v +1)an,v

= O (n) .

The proof is completed. �

Lemma 2.3. Let {an,k} be non-negative and non-increasing sequence with respect to k. Then
for 0 ≤ i ≤ j <∞, (1/n) ≤ t ≤ π, and any n, the following estimation

∣∣∣∣G(i,j)
n (t)

∣∣∣∣ :=
∣∣∣∣∣∣∣∣

j∑
v=i

an,v
(1 + r)v

v∑
j=0

(
v
j

)
rv−j

sin(2j +1) t2
sin

(
t
2

)
∣∣∣∣∣∣∣∣ = Or

(
An,τ

t

)
,

holds true.

Proof. We have

∣∣∣∣G(i,j)
n (t)

∣∣∣∣ ≤
∣∣∣∣∣∣∣∣
τ−1∑
v=i

an,v
(1 + r)v

v∑
j=0

(
v
j

)
rv−j

sin(2j +1) t2
sin

(
t
2

)
∣∣∣∣∣∣∣∣

+

∣∣∣∣∣∣∣∣
j∑

v=τ

an,v
(1 + r)v

v∑
j=0

(
v
j

)
rv−j

sin(2j +1) t2
sin

(
t
2

)
∣∣∣∣∣∣∣∣ := |Gn,1(t)|+ |Gn,2(t)|.
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For the first term, appearing in the right hand side of the above inequality, we have

|Gn,1(t)| ≤
(π
t

) τ−1∑
v=i

an,v
(1 + r)v

v∑
j=0

(
v
j

)
rv−j

≤
(π
t

) τ−1∑
v=i

an,v = O

1t
τ−1∑
v=i

aτ,v

 = O (
An,τ

t

)
,

where we have used the basic inequality sinθ ≥ (2/π)θ for 0 ≤ θ ≤ π/2.
Now we estimate the second term. Using Abel’s lemma, we get

Gn,2(t) ≤

∣∣∣∣∣∣∣∣
j∑

v=τ

an,v
(1 + r)v

v∑
j=0

(
v
j

)
rv−j

sin(2j +1) t2
sin

(
t
2

)
∣∣∣∣∣∣∣∣

=

∣∣∣∣∣∣∣∣ℑ
j∑

v=τ

an,v
(1 + r)v

v∑
j=0

(
v
j

)
rv−j

ei(2j+1)
t
2

sin
(
t
2

)
∣∣∣∣∣∣∣∣

≤ π
t

∣∣∣∣∣∣∣∣
j∑

v=τ

an,v
(1 + r)v

v∑
j=0

(
v
j

)
rv−j

(
eit

)j ∣∣∣∣∣∣∣∣
≤ π

t

∣∣∣∣∣∣∣∣
j∑

v=τ

an,v

(
r + eit

1+ r

)v ∣∣∣∣∣∣∣∣
≤

2πan,τ
t

max
τ≤v≤j

∣∣∣∣∣∣∣
v∑

m=0

(
r + eit

1+ r

)m∣∣∣∣∣∣∣
=

2πan,τ
t

max
τ≤v≤j

∣∣∣∣∣∣∣∣
1−

(
r+eit
1+r

)v+1
1−eit
1+r

∣∣∣∣∣∣∣∣
≤

4πan,τ
t

r +1
sin t

2
≤ 4(r +1)π2

t

an,τ
t

≤ 4(r +1)π2

t

(
an,τ
An,τ

)
An,τ

1
t

≤ 4(r +1)π2

t

An,τ

(τ +1) t
= Or

(
An,τ

t

)
,

since (an,τ )/An,τ ≤ 1
1+τ and 1

1+τ < t. With this the proof is completed. �

3. New Result

We establish the following theorem.

Theorem 3.1. Let A := (an,v) be a positive lower triangular matrix such that
n∑

v=0

an,v = 1, (n = 0,1,2, . . . )
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and its entries form a non-increasing sequence.
Let β(t) be a positive and non-decreasing function of t. If

Φx(t) =
∫ t

0
|ϕx(u)|du = o

(
t

β(1/t)

)
, as t→ +0,

β(n)→∞, as n→∞,

then a sufficient condition that the Fourier series (1.1) to be summable (A)(E,r) to f (t) at
the point t = x is ∫ n

1

R(u)
uβ(u)

du = O (1) , as n→∞.

Proof. Following A. Zygmund (see [6], page 88, equality (5.6)) the j-th partial sums of
the series (1.1) at the point t = x is

sj (x) = f (x) +
1
π

∫ π

0
ϕx(t)

sin(j +1/2)t
sin(t/2)

dt.

Therefore, we can write for (E,r) means of the series (1.1) at the point t = x, as follows

Er
v(x) =

1
(1+ r)v

v∑
j=0

(
v
j

)
rv−jsj (x)

= f (x) +
1

π(1 + r)v

∫ π

0

ϕx(t)
sin(t/2)

 v∑
j=0

(
v
j

)
rv−j sin

(
j +

1
2

)
t

dt
= f (x) +

1
π(1 + r)v

∫ π

0

ϕx(t)
sin(t/2)

ℑ

 v∑
j=0

(
v
j

)
rv−jei(j+

1
2 )t

dt
= f (x) +

1
π(1 + r)v

∫ π

0

ϕx(t)
sin(t/2)

ℑ
[
e
it
2 (r + eit)v

]
dt

= f (x) +
1
π

∫ π

0
ϕx(t)

ℑ
[
e
it
2 (r + eit)v

]
(1 + r)v sin(t/2)

dt. (3.2)

Thus, using (3.2) transformation Tn,A(E,r)(x) of the partial sums sj (x) takes the following
form

Tn,A(E,r)(x) =
n∑

v=0

an,v
(1 + r)v

v∑
j=0

(
v
j

)
rv−jsj (x)

= f (x) +
1
π

∫ π

0

n∑
v=0

an,vϕx(t)
ℑ

[
e
it
2 (r + eit)v

]
(1 + r)v sin(t/2)

dt

= f (x) +
1
π

∫ π

0
ϕx(t)Gn(t)dt
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and for 0 < δ < 1 we can write

Tn,A(E,r)(x)− f (x) =
1
π

∫ 1
n

0
+
∫ δ

1
n

+
∫ π

δ

Gn(t)ϕx(t)dt :=
3∑

m=1

rm(x). (3.3)

Using Lemma 2.2 and conditions of the theorem, we have

|r1(x)| ≤
1
π

∫ 1
n

0
|Gn(t)||ϕx(t)|dt

= O (n)
∫ 1

n

0
|ϕx(t)|dt = O (n)o

(
1

nβ(n)

)
→ 0 as n→∞. (3.4)

Now, using Lemma 2.3, we obtain

|r2(x)| ≤
1
π

∫ δ

1
n

|Gn(t)||ϕx(t)|dt

= O
∫ δ

1
n

A(1/t)
t
|ϕx(t)|dt


= O

∫ δ

1
n

A(1/t)
t

Φ ′x(t)dt


= O

(A(1/t)t
Φx(t)

) ∣∣∣∣∣δ1
n

−
∫ δ

1
n

Φx(t)d
(
A(1/t)

t

)
= O

o (A(1/t)α(1/t)

) ∣∣∣∣∣δ1
n

−
∫ δ

1
n

Φx(t)d
(
A(1/t)

t

)
= o(1) + o

(
A(n)
α(n)

)
+O

∫ δ

1
n

o

(
t

α(1/t)

)
d

(
A(1/t)α(1/t)

tα(1/t)

)
= o(1) +O

∫ δ

1
n

o

(
t

α(1/t)

)(
A(1/t)
tα(1/t)

dα(1/t) +α(1/t)d
(
A(1/t)
tα(1/t)

))
= o(1) + o(1)

∫ δ

1
n

dα(1/t)

[α(1/t)]2
+
∫ δ

1
n

td

(
A(1/t)
tα(1/t)

)
= o(1) + o(1)

− 1
α(1/t)

∣∣∣∣∣δ1
n

+
tA(1/t)
tα(1/t)

∣∣∣∣∣δ1
n

−
∫ 1

1
n

A(1/t)
tα(1/t)

dt


= o(1) + o(1)

(∫ n

1

A(u)
uα(u)

du

)
= o(1) + o(1)O(1) = o(1). (3.5)

Finally, using the well-known Riemann-Lebesgue theorem we immediately obtain

|r3(x)| ≤
1
π

∫ π

δ
|Gn(t)||ϕx(t)|dt = o(1) as n→∞. (3.6)

Now, (3.3) with (3.4), (3.5), and (3.6) complete the proof of theorem. �

In the following cases can be specialized the product mean (A)(E,r):
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(i) If an,v =
pn−vqv
Rn

then (A)(E,r) mean reduces to (N,p,q)(E,r) mean.
(ii) If an,v =

pn−v
Pn

then (A)(E,r) mean reduces to (N,p)(E,r) mean.

(iii) If an,v =
qv
Qn

then (A)(E,r) mean reduces to (N,q)(E,r) mean.

(iv) If an,v =
1

n+1 and r = 1 then (A)(E,r) mean reduces to (N,1/(n+1))(E,1) mean.
(v) If an,v =

(n+α−1
α−1

)
, α > 0 and r = 1, then (A)(E,r) mean reduces to (C,α)(E,1)

mean.
Now we present here only two of corollaries derived from the main result.

Corollary 3.2. Let all the conditions of Theorem 3.1 be satisfied. Then a sufficient
condition that the Fourier series (1.1) to be summable (N,p,q)(E,r) to f (t) at the point
t = x is ∫ n

1

R(u)
uβ(u)

du =O (1) , as n→∞.

Corollary 3.3. Let all the conditions of Theorem 3.1 be satisfied. Then a sufficient
condition that the Fourier series (1.1) to be summable (C,α)(E,1) to f (t) at the point
t = x is ∫ n

1

R(u)
uβ(u)

du =O (1) , as n→∞.

Remark 3.4. Note that if we take r = 1 in Corollary 4.1. we immediately obtain
Theorem 1.1. Therefore Theorem 3.1 is a proper generalization of the result presented
in [5].
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