

b- \mathcal{H}_{σ} -OPEN SETS IN HGTS

R. RAMESH[†] AND AHMAD AL-OMARI

 Date of Receiving
 : 02. 02. 2022

 Date of Revision
 : 12. 05. 2022

 Date of Acceptance
 : 23. 05. 2022

Abstract. In this paper, we introduce and study the new types of sets in hereditary generalized topological space. Also, we obtained decompositions of (μ, λ) -continuity.

1. Introduction and Preliminaries

In the year 2002, Csaszar [6] introduced very usefull notions of generalized topology and generalized continuity. Consider Z be a nonempty set and μ be a collection from the subsets of Z. Then μ is called a generalized topology (briefly GT) if $\emptyset \in \mu$ and an arbitrary union of elements from μ belongs to μ . The main purpose of this paper is to establish some new decompositions of (μ, λ) -continuous functions. Firstly, we introduce a new class of sets called $b-\mathcal{H}_{\sigma}$ -open sets. Properties and the relationships of $b-\mathcal{H}_{\sigma}$ -open sets are investigated. On the other hand, we introduce the notions of π^* -B- \mathcal{H}_{σ} -sets, α^* -B- \mathcal{H}_{σ} -sets and σ^* -B- \mathcal{H}_{σ} -sets. Finally, we obtain some new decompositions of (μ, λ) continuous functions via these new concepts. A space Z is called a C_0 -space [20], if $C_0 = Z$, where C_0 is the set of all representative elements of sets of μ . A subset L of a open [19], μ -t-set [15], μ -t*-set [15]), if $L \subset i_{\mu}c_{\mu}i_{\mu}(L)$ (resp. $L \subset c_{\mu}i_{\mu}(L)$, $L \subset i_{\mu}c_{\mu}(L)$, $L \subset c_{\mu}i_{\mu}c_{\mu}(L), L \subset c_{\mu}i_{\mu}(L) \cup i_{\mu}c_{\mu}(L), i_{\mu}c_{\mu}(L) = i_{\mu}(L), i_{\mu}c_{\mu}i_{\mu}(L) = i_{\mu}(L)).$ A subset L of Z is μ -locally closed set [13], $L = U \cap V$, where U is μ -open and V is μ -closed. A GTS (Z, μ) is called μ -extremally disconnected [7], if the μ -closure of every μ -open set is μ -open. A function $f:(Z,\mu)\to (W,\lambda)$ is said to be (μ,λ) -continuous [6], iff $M \in \lambda$ implies that $f^{-1}(M)$ is μ -open. A nonempty family \mathcal{H} of subsets of Z is called as a hereditary class [9], if $L \in \mathcal{H}$ and $B \subset L$, then $B \in \mathcal{H}$. For each $L \subseteq Z$,

²⁰¹⁰ Mathematics Subject Classification. 54A05, 54D20.

Key words and phrases. hereditary generalized topology, α - \mathcal{H}_{σ} -open, σ - \mathcal{H}_{σ} -open and π - \mathcal{H}_{σ} -open sets, b- \mathcal{H}_{σ} -open sets.

Communicated by. Erdal Ekici

[†]Corresponding author