DECOMPOSITION OF $(\alpha-\mathbb{H}_\sigma, \lambda)$-CONTINUITY

R. RAMESH† AND AHMAD AL-OMARI

Date of Receiving : 23. 11. 2022
Date of Revision : 06. 04. 2023
Date of Acceptance : 12. 06. 2023

Abstract. In this new research paper we introduce and investigate the new kind of open sets $\alpha-\mathbb{H}_\sigma$-open, $\sigma-\mathbb{H}_\sigma$-open, $\pi-\mathbb{H}_\sigma$-open, $\beta-\mathbb{H}_\sigma$-open sets in hereditary generalized topological spaces. Also, we obtained a decomposition of $(\alpha-\mathbb{H}_\sigma, \lambda)$-continuity and decompositions of (μ, λ)-continuity.

1. Introduction and Preliminaries

In the year 2002, Császár [5] introduced very usefull notions of generalized topology and generalized continuity. Consider Z be a nonempty set and μ be a collection from the subsets of Z. Then μ is called a generalized topology (briefly GT) if $\emptyset \in \mu$ and an arbitrary union of elements from μ belongs to μ. Let μ be a generalized topology on Z, the elements of μ are called μ-open sets and the complement of μ-open sets are called μ-closed sets.

A subset L of a space (Z, μ) is called as μ-α-open [6] (resp. μ-σ-open [6], μ-π-open [6], μ-β-open [6]) if $L \subset i_\mu c_\mu i_\mu(L)$ (resp. $L \subset c_\mu i_\mu(L)$, $L \subset c_\mu i_\mu(L)$, $L \subset c_\mu i_\mu(L)$). Let Z be a space. Then $\mu(x) = \{U : x \in U \in \mu\}$. A space Z is called a C_0-space [14], if $C_0 = Z$, where C_0 is the set of all representative elements of sets of μ and x is called a represent element of $u \in \mu$ if $u \subset v$ for each $v \in \mu(x)$. A nonempty family \mathcal{H} of subsets of Z is called as a hereditary class [7], if $L \in \mathcal{H}$ and $B \subset L$, then $B \in \mathcal{H}$. For each $L \subset Z$, $L^*(\mathcal{H}, \mu) = \{z \in Z : L \cap V \notin \mathcal{H}$ for all $V \in \mu$ such that $z \in V\}$[7]. For $L \subset Z$, define $c_\mu^*(L) = L \cup L^*(\mathcal{H}, \mu)$ and $\mu^* = \{L \subset Z : Z-L = c_\mu^*(Z-L)\}$. If \mathcal{H} is a hereditary class on Z, then (Z, μ, \mathcal{H}) is

2010 Mathematics Subject Classification. 54A05.
Key words and phrases. hereditary generalized topology, $\alpha-\mathbb{H}_\sigma$-open, $\sigma-\mathbb{H}_\sigma$-open and $\pi-\mathbb{H}_\sigma$-open sets.
Communicated by. Murad Özkoç
† Corresponding author