

Poincare Journal of Analysis & Applications Vol. 7, No. 2 (2020), 175-184 ©Poincare Publishers DOI:10.46753/pjaa.2020.v07i02.003

ON THE DEGREE OF APPROXIMATION OF CONJUGATE FUNCTIONS OF PERIODIC CONTINUOUS FUNCTIONS

XHEVAT Z. KRASNIQI

Date of Receiving	:	17.	05.	2020
Date of Revision	:	19.	07.	2020
Date of Acceptance	:	05.	08.	2020

Abstract. In this paper we have obtained the degree of approximation of conjugate functions of periodic continuous functions. The results are expressed in terms of modulus of continuity and via a mediate function.

1. Introduction

Let f(x) be a 2π - periodic continuous function and $\omega(\delta) = \omega(\delta, f)$ its modulus of continuity defined by

$$\omega(\delta, f) := \sup_{|x-y| \le \delta} |f(x) - f(y)|.$$

Denote by $A := (a_{n,k})$ (k, n = 0, 1, ...) a lower triangular infinite matrix of real numbers and the A-transform of $\{S_n(f; x)\}$ by

$$T_{n,A}(f;x) := \sum_{k=0}^{n} a_{n,k} S_k(f;x), \quad (n = 0, 1, \dots),$$

where

$$S_k(f;x) = \frac{a_0}{2} + \sum_{j=1}^k (a_j \cos jx + b_j \sin jx)$$

are partial sums of the Fourier series of f(x) at x,

$$f(x) \sim \frac{a_0}{2} + \sum_{k=1}^{\infty} (a_k \cos kx + b_k \sin kx).$$

We write $u = \mathcal{O}(v)$ if there exists a positive constant C such that $u \leq Cv$, and ||f|| denotes the norm of f:

$$||f|| = \max_{0 \le x \le 2\pi} |f(x)|.$$

Key words and phrases. Monotonicity, degree of approximation, Fourier series, conjugate series, modulus of continuity, mediate function.

Communicated by. Hüseyin Bor

²⁰¹⁰ Mathematics Subject Classification. 42A10, 41A25, 42A16, 42A50.