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Abstract. This research addresses a systematic design for investigating hybrid
projective combination difference synchronization (HPCDS) scheme between chaotic
prey-predator systems via active control method. The presented work deals with
generalized Lotka and Volterra (GLV) biological system. The considered system
analyzes the interactions among three species prey (one) and predators (two)
that comprises of a system of ordinary differential equations. An active control
approach has been investigated which is primarily based on Lyapunov stability
theory (LST). The discussed scheme derives the asymptotic stability globally using
HPCDS technique. Numerical simulations are thereafter implemented to validate
the efficiency and feasibility of the discussed strategy using MATLAB. Interestingly,
both the computational and theoretical results agree remarkably. In addition,
a comparison analysis has been done which shows the significance of considered
approach over prior published researches. Furthermore, the considered HPCDS
scheme is useful in secure communication and encrypting images.

1. Introduction

Currently, the preservation of ecological as well as biological systems is a prime
concern to a vast spectrum of scientific domains. Subsequently, controlling and sur-
veying the immensely complex and irregular dynamic behaviour found in the afore-
said systems is primarily a huge challenging topic for scientists and researchers from
varied fields. This extreme complexity found in theses systems has been introduced
fundamentally due to the oscillatory interactions occurring in the populations. In this
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configuration, prey-predator model develops the well known models for interplaying
populations. In fact, the interplaying in prey and predator along with extra conditions
has been an indicative idea in mathematical biology since many years. The predation
and co-operation/competition species are basically the most significant interactions in
all the corresponding interactions. This described competitiveness succeeds either both
the considering population are independent of one another or both interact and each
one of the population employs descending pressure on other which in turn generates a
hugely contrasting complex natural habitat. Such interaction are basically described by
nonlinear polynomial models. Interestingly, Alfred J. Lotka [28] and Vito Volterra [44]
have independently in 1920s developed similar equations for these interactions almost
at the same time to study various key aspects of population dynamics like predation
or parasitism between two species. As a result, these equations are famously known
as Lotka-Volterra (LV) equations or Predatoe-Prey model , to credit the seminal work
of these mathematicians. Nevertheless, there is a huge dissimilarity in their respective
approaches.

Initially, LV model has been developed as a biological concept, yet it is utilised to
numerous diverse areas of research. For instance, Gavin et al. [14] studied LV type
model to understand the structure of marine phage populations. Further, Antoniou and
Pitsillides [1] applied LV model for controlling congestion in wireless sensor networks to
avoid packet loss and delay. Also, Gatabazi et al. [13, 12] studied the transaction counts
and interactions between crypto currencies like Bitcoin, Litecoin and Ripple using LV
models. Further, Perhar et al. [36] employed the LV model to discuss zooplankton
growth and phytoplankton dynamics in the context of variations in resource allocation.
Also, Tonnang et al. [51] applied LV model to study the impact of biological control on
diamondback moth (Plutellaxylostella) population. In addition, Tsai et al. [50] used LV
model to describe the feasibility of using low-carbon energy sources to reduce fossil fuel
consumption accurately in the United States. Also, Reichenbach et al. [39] calculated
extinction probabilities LV model. Furthermore, Silva-Dias and Lopez-Castillo [46]
discussed spontaneous symmetry breaking of population without population excess.
Additionally, Hening and Nguyen [16] observed the persistence and extinction of species
in a simple food chain using LV model. Moreover, Xiong et al. [58] discussed the
role of random perturbations for inter-specific competition rates and the coexistence
equilibrium. Very recently, Sayan Nag [32] studied the effect of novel corona virus,
popularly known as COVID-19, on population’s dynamics using a modified version of
LV model.

Nowadays, generalized Lotka-Volterra (GLV) biological model containing three species
has been the most prominent among all existent population’s oscillatory interactions.
Arnedo, Tresser and Coullet [2] in 1980 have depicted that it may acquires chaotic, that
is, extremely confused designing for a properly selected set of parameters. Also, these
models basically comprising of one prey and two predators populations. Significantly, in
1988 Samardzija and Greller [43] carried out a comprehensive study in GLV biological
model illustrating the chaoticity of GLV model. Furthermore, they deduced some
very intriguing properties of GLV model. Theoretically, chaotic systems are nonlinear
systems having at least one positive Lyapunov exponent. Chaos synchronization (CS)
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of chaotic systems is prescribed as a methodology of adapting chaotic systems (identical
or non-identical) in a typical manner that both exhibit the similar execution owing to
pairing to gain stability.

Synchronization phenomenon in chaotic systems has been an intriguing and fascinat-
ing field for researchers and scientists from varied fields ever since its initiation in 1990
by Pecora and Carroll [35] using master-slave framework that was unprecedented for
almost 30 years. Later on, a wide ranging of newly prescribed chaos synchronization
and controlling techniques have been introduced and developed. Precisely, enormous
synchronization approaches such as complete [47], hybrid [48], anti [24], hybrid projective
[20, 19], function projective [61], phase [29], projective [8], combination synchronization
[19], lag [23], combination-combination [20], modified projective [25], compound [18],
triple compound [59], combination difference [21], etc. in chaotic systems are achieved
by using several control techniques, for example, active [7], adaptive or parameter
identification method [21], backstepping design [38], impulsive [26], feedback [5], sliding
mode [52], etc. available in the current literature. Chaos synchronization in chaotic
systems using active control technique was firstly introduced and studied by Er-Wei
Bai and Karl E Lonngren [3] in 1997. Mainieri and Rehacek [30] in 1999 advocated
the idea of projective synchronization in chaotic systems. Furthermore, combination
synchronization was first described in 2011 by Runzi et al [40]. Some further research
works [56, 41] have been reported in this direction. Moreover, Dongmo et al. [9] in 2018
introduced a new technique described as difference synchronization of chaotic systems.
Recently, Yadav et al.[60] have studied difference synchronization in chaotic systems
with exponential terms in the year 2019.

Interestingly, chaos theory has a broad spectrum of applications in science and engi-
neering such as secure communication [22], image encryption [49], neural networks [4],
ecological models [42], robotics [34] and so on. In recent times, several kinds of secure
communication techniques have been presented [11, 57, 22, 15] such as chaos modulation
[57, 33, 27, 31], chaos masking [31, 55] and chaos shift keying [6, 17]. In chaos communi-
cation techniques, the basic idea of transmitting a message using chaotic/hyperchaotic
systems is that a message signal has been embedded in transmitter system that generates
a chaotic signal. Thereafter, this chaotic signal is emitted to the receiver via a public
channel. The message signal is recovered finally by the receiver. A chaotic system is
specifically used both as the transmitter and receiver. As a consequence, this theory
has sought significant consideration in varied research fields. Also, an optimal control
technique and synchronization among LV model has been examined rigorously in [10].
Furthermore, in [54] and [53], adaptive control technique is discussed to synchronize
GLV biological system.

Keeping the aforementioned discussions in mind, the immediate goal in this paper
is to investigate a hybrid projective combination difference synchronization (HPCDS)
in three identical integer order chaotic GLV systems by using active control approach.
Traditionally, in combination difference synchronization strategy, three chaotic systems
(identical or non-identical) are investigated by choosing two systems as master systems
and one as a slave system. We have selected in this work the GLV model (master as
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well as slave system) since it possesses numerous oscillatory properties resembling to
population’s, yet it is non-realistic biological model. In addition, based on a famously
known Lyapunov stability theory (LST), we investigate in detail the active biological
control laws and the convergence of synchronization error functions to achieve HPCDS
synchronized state.

The manuscript is systematized as: Sect. 2 presents some preliminaries having
few notations and basic terminology to be employed in the following sections. Sect.
3 prescribes some basic structural characteristics of GLV model on which HPCDS
using active control approach has been investigated. Also here some methodological
considerations of HPCDS scheme are presented in a systematic manner. Further, the
active nonlinear controllers have been appropriately designed for achieving HPCDS
strategy. Sect. 4 comprises of the discussions with regard to numerical simulations and
demonstrations of the graphical results performed in MATLAB software. In addition, a
comparative analysis with previously published researches has been carried out. In the
end, some conclusions and future works have been presented in Sect. 5.

2. Problem Formulation

In this section, a methodology to describe combination synchronization [40] based on
master-slave framework in three chaotic systems has been presented that is necessary
for the following sections.

Let the first master system be
ẏm1 = f1(ym1), (2.1)

and the second master system be
ẏm2 = f2(ym2). (2.2)

Let the slave system be
ẏs1 = f3(ys1) + U(ym1, ym2, ys1), (2.3)

where ym1 = (ym11, ym12, ..., ym1n)
T ∈ Rn, ym2 = (ym21, ym22, ..., ym2n)

T ∈ Rn,
ys1 = (ys11, ys12, ..., ys1n)

T ∈ Rn are the state vectors of master and slave systems
respectively, f1, f2, f3 : Rn → Rn are three nonlinear continuous vector functions,
U = (U1, U2, ..., Un)

T : Rn×Rn×Rn → Rn are the controllers to be properly determined.
We define the combination difference synchronization error as

E = Rys1 − (Qym2 − Pym1),

where P = diag(p1, p2, ....., pn), Q = diag(q1, q2, ....., qn), R = diag(r1, r2, ....., rn) and
R ̸= 0.

Definition 2.1. The combination of two chaotic master systems (2.1)-(2.2) are said to
be in combination difference synchronization (CDS) with the slave system (2.3) if

lim
t→∞

∥E(t)∥ = limt→∞∥Rys1(t)− (Qym2(t)− Pym1(t))∥ = 0.

Remark 2.2. The matrices P,Q and R are called the scaling matrices. Moreover, P,Q
and R can be extended as matrices of functions of state variables ym1, ym2 and ys1.
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Remark 2.3. The problem of combination synchronization would be converted into
traditional chaos control issue for P = Q = 0.

Remark 2.4. Definition 1 exhibits that combination of two master systems and
corresponding one slave system may be expanded to more such systems. Moreover, the
chosen master systems as well as slave system of combination synchronization scheme
may be identical or non-identical.

Remark 2.5. If R = I and P = Q = ηI, then for η = 1 it will be reduced to combination
complete synchronization and for η = −1 it turns into combination anti-synchronization.
Therefore, the combination of anti-synchronization and complete synchronization makes
hybrid projective synchronization. Hence, the hybrid projective combination difference
synchronization (HPCDS) error takes the form:

E = ys1 − η(ym2 − ym1), (2.4)
where η = diag(η1, η2, ..., ηn).

Definition 2.6. The combination of two chaotic master systems (2.1)-(2.2) are said to
be in hybrid projective combination difference synchronization (HPCDS) with the slave
system (2.3) if

lim
t→∞

∥E(t)∥ = limt→∞∥ys1(t)− η(ym2(t)− ym1(t))∥ = 0.

The following section presents the CDS scheme to control chaos generated by chaotic
systems (2.1)-(2.3) using active control approach.

3. Stability Analysis via Active Control Approach

We now describe the synchronization theory to achieve CDS scheme in two chaotic
master systems (2.1)-(2.2) and one chaotic slave system (2.3). We next design the
controllers by

Ui =
θi
ri

− (f3)i −
KiEi

ri
, (3.1)

where θi = (qi(f2)i − pi(f1)i), i = 1, 2, ......., n.

Theorem 3.1. To achieve the CDS scheme among the chaotic systems (2.1)-(2.3)
globally and asymptotically, we select the active controllers as described in (3.5).

Proof. The errors are given by
Ei = riys1i − (qiym2i − piym1i), for i = 1, 2, ....., n.

The error dynamical system turns into
Ėi = riẏs1i − (qiẏm2i − piẏm1i)

= ri((f3)i + Ui)− (qi(f2)i − pi(f1)i)

= ri((f3)i +
θi
ri

− (f3)i −
KiEi

ri
)− θi

= θi −KiEi − θi

= −KiEi (3.2)
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The classic Lyapunov function is defined as:

V (E(t)) =
1

2
ETE =

1

2

∑
E2

i (3.3)

On differentiating V (E(t)) as given in eq (3.7), we have

V̇ (E(t)) =
∑

EiĖi

Using eq (3.6), one finds that

V̇ (E(t)) =
∑

Ei(−KiEi).

= −
∑

KiE
2
i ). (3.4)

We now select (K1,K1, .......,Kn) so that V̇ (E(t)) given by eq (3.8) becomes negative
definite. Thus, by Lyapunov stability theory [37, 45], we obtain

lim
t→∞

Ei(t) = 0 for (i = 1, 2, 3).

Therefore, the master systems (2.1)-(2.2) and slave system (2.3) have achieved desired
CDS scheme. □

4. An Illustrative example

In this section, we firstly describe in short the chaotic system, famously known
as Generalized Lotka-Volterra (GLV) three species biological system, to be picked
up for HPCDS technique using active control approach. Samardzija and Greller [43]
prominently in 1988 have depicted that GLV system acquires chaotic behavior.

We now represent GLV model as the first master system:
ẏm11 = ym11 − ym11ym12 + b3y

2
m11 − b1y

2
m11ym13

ẏm12 = −ym12 + ym11ym12

ẏm13 = −b2ym13 + b1y
2
m11ym13,

(4.1)

where (ym11, ym12, ym13)
T ∈ R3 is the state vector of the system and b1, b2 and b3 are

positive parameters. Also, in (4.9), ym11 represents the prey population and ym12, ym13

denotes the predator populations. For parameter values b1 = 2.9851, b2 = 3, b3 = 2 and
initial values (27.5, 23.1, 11.4), the first master GLV system exhibits chaotic behaviour
as shown in Fig.1 (a) and Fig.2 (a).

The second identical master GLV chaotic system prescribed respectively as:


ẏm21 = ym21 − ym21ym22 + b3y

2
m21 − b1y

2
m21ym23

ẏm22 = −ym22 + ym21ym22

ẏm23 = −b2ym23 + b1y
2
m21ym23,

(4.2)

where (ym21, ym22, ym23)
T ∈ R3 is the state vector of the system and b1, b2 and b3 are

positive parameters. Also, in (4.10), ym11 represents the prey population and ym12, ym13

denotes the predator populations. For parameter values b1 = 2.9851, b2 = 3, b3 = 2,
this second master GLV system displays chaotic behaviour for chosen initial conditions
(1.2, 1.2, 1.2) as depicted in Fig.1 (b) and Fig.2 (b).
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Figure 1. Phase graphs for chaotic GLV system in (A) ym11 −
ym13 plane, (B) ym21 − ym22 plane, (C) ys31 − ys33 plane
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Figure 2. Phase graphs for chaotic GLV system in (A) ym11 −
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ys33 space
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The slave system, prescribed by the identical chaotic GLV system, is described as:
ẏs31 = ys31 − ys31ys32 + b3y

2
s31 − b1y

2
s31ys33 + U1

ẏs32 = −ys32 + ys31ys32 + U2

ẏs33 = −b2ys33 + b1y
2
s31ys33 + U3,

(4.3)

where (ys11, ys12, ys13)
T ∈ R3 is the state vector of the system and b1, b2 and b3 are

positive parameters. Also, in (4.11), ym11 represents the prey population and ym12,
ym13 denotes the predator populations. For parameter values b1 = 2.9851, b2 = 3,
b3 = 2 and initial conditions (2, 9, 12.8, 20.3), the slave GLV system exhibits chaotic
behaviour as shown in Fig.1 (c) and Fig.2 (c). Moreover, the detailed theoretical study
and numerical simulation results for (4.9)-(4.11) can be found in [43]. Further, U1, U2

and U3 are active controllers to be determined in such a manner that HPCDS between
three identical GLV chaotic systems will be attained.

Next, the HPCDS scheme is proposed to synchronize the states of GLV model.
Lyapunov stability theory (LST) based active control approach is employed and required
stability criterion is derived.

Defining now the error functions (E1, E2, E3) as
E1 = ys31 − η1(ym21 − ym11)

E2 = ys32 − η2(ym22 − ym12)

E3 = ys33 − η3(ym23 − ym13).

(4.4)

The immediate objective in this paper is the designing of the controllers Ui, (i = 1, 2, 3)
which ensure that error functions described in (4.12) satisfy lim

t→∞
Ei(t) = 0 for (i =

1, 2, 3). Then, resulting error dynamics becomes:
Ė1 = E1 − ys31ys32 + b3y

2
s31 − b1y

2
s31ys33 − η1(−ym21ym22 + b3y

2
m21

−b1y
2
m21ym23 + ym11ym12 − b3y

2
m11 + b1y

2
m11ym13) + U1

Ė2 = −E2 + ys31ys32 − η2(−ym11ym12 + ym21ym22) + U2

Ė3 = −b2E3 + b1y
2
s31ys33 − η3(b1y

2
m21ym23 − b1y

2
m11ym13) + U3

(4.5)

Let us now define the active controllers as:

U1 =
θ1
r1

− (f3)1 −
K1E1

r1
,

where θ1 = (q1(f2)1 − p1(f1)1) as described in (3.5). On putting the values of p1, q1, θ1,
(f3)1 in (4.14) and simplifying, we get

U1 = − E1 + ys31ys33 − b3y
2
s31 + b1y

2
s31ys33 + η1(−ym21ym22 + b3y

2
m21

− b1y
2
m21ym23 + ym11ym12 − b3y

2
m11 + b1y

2
m11ym13 −K1E1. (4.6)

Considering (3.5), we have

U2 =
θ2
r2

− (f3)2 −
K2E2

r2
, (4.7)

where θ2 = (q2(f2)2 − p2(f1)2). By substituting the values of p2, q2, θ2, (f3)2 in (4.16)
and solving, we find that

U2 = E2 − ys31ys32 + η2(−ym11ym12 + ym21ym22)−K2E2. (4.8)
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Again using (3.5), we obtain

U3 =
θ3
r3

− (f3)3 −
K3E3

r3
, (4.9)

where θ3 = (q3(f2)3 − p3(f1)3). By putting the values of p3, q3, θ3, (f3)3 in (4.18) and
combining, we have

U3 = b2E3 − b1y
2
s31ys33 + η3(b1y

2
m21ym23 − b1y

2
m11ym13)−K3E3, (4.10)

where K1 > 0,K2 > 0 and K3 > 0 are gain constants.
On substituting the active controllers (4.15), (4.17) and (4.19) into error dynamics

(4.13), we get

Ė1 = −K1E1, Ė2 = −K2E2, Ė3 = −K3E3. (4.11)

Lyapunov function is now described as

V (E(t)) =
1

2
[E2

1 + E2
2 + E2

3 ]. (4.12)

It is obvious that Lyapunov function V (E(t)) is positive definite in R3.
Then, the derivative of Lyapunov function V (E(t)) may be expressed as:

V̇ (E(t)) = E1Ė1 + E2Ė2 + E3Ė3. (4.13)

Using (4.20) in (4.22), we obtain

V̇ (E(t)) = −K1E
2
1 −K2E

2
2 −K3E

2
3 < 0,

which depicts clearly that V̇ (E(t)) is negative definite.
Therefore, by Lyapunov stability theory, we deduce that HPCDS error dynamics is

asymptotic stable globally, i.e., the synchronization error E(t) → 0 asymptotically as
t → ∞ for each initial values E(0) ∈ R3.

5. Numerical Simulations and Discussions

In this section, we carry out few simulation experiments for illustrating the
effectiveness of proposed HPCDS scheme using active control approach. For achieving
this, we employ the typical 4th-order Runge-Kutta method in solving systems containing
ordinary differential equations. Selected parameters of given GLV model are b1 = 2.9851,
b2 = 3 and b3 = 2 which depict that given GLV system behaves chaotically without
the controllers. Initial conditions of master systems (4.9)-(4.10) and corresponding
slave system (4.11) are (ym11(0) = 27.5, ym12(0) = 23.1, ym13(0) = 11.4), (ym21(0) =
1.2, ym22(0) = 1.2, ym23(0) = 1.2) and (ys31(0) = 2.9, ys32(0) = 12.8, ys33(0) =
20.3) respectively. We attain HPCDS scheme among two master (4.9)-(4.10) and
corresponding one slave systems (4.11) by picking up the matrix η with η1 = 6, η2 =
−4, η3 = 3. Further, the control gains (K1,K2,K3) have been taken as Ki = 4 for
i = 1, 2, 3. Also, Fig. 3(a-c) display the HPCDS synchronized state trajectories of
master (4.9)-(4.10) and slave system (4.11) respectively. Moreover, synchronization
error functions (E1, E2, E3) = (160.7,−74.8, 50.9) approach zero for t tending to infinity
as shown in Fig. 4(a-d). Therefore, the discussed HPCDS approach for master and slave
systems has been illustrated computationally .
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5.1. A Comparative Analysis. Researchers have achieved hybrid synchronization
among two chaotic systems via adaptive control method in [54] when performed on
the same GLV system with similar parameters. It is noticed that synchronized error
converges to zero at t = 0.8(approx), whereas in our study, the HPCDS scheme has been
attained via active control approach, in which it is noted that the synchronization errors
converge to zero at t = 0.4(approx) as exhibited in Fig.5. This obviously illustrates that
our proposed HPCDS scheme utilizing active control approach is more preferable over
previous published work.
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Figure 5. HPCDS synchronization error graph

6. Conclusion

In this paper, the suggested HPCDS scheme of identical chaotic GLV systems via
active control approach has been explored. By constructing suitable active nonlinear
controllers based on classic LST, the considered HPCDS strategy is attained. In
addition, MATLAB performed numerical simulations indicate that the designed control
functions are efficient in controlling the chaotic regime of GLV systems to desired set
points which depicts the effectiveness of our proposed HPCDS technique. Remarkably,
the analytical theory and the numerical outcomes both are in complete agreement.
During comparison analysis, it is noticed that time taken by synchronization error
functions for converging to zero with time tending to infinity is less in comparing to
other previously published researches. Moreover, we understand that our considered
HPCDS scheme among chaotic GLV system can be generalized by applying other control
techniques.
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