

Properties of almost \mathcal{I} -continuous functions

S. JAFARI[†], R. SARANYA AND N. RAJESH

Date of Receiving	:	13.08.2017
Date of Revision	:	02.10.2017
Date of Acceptance	:	07.03.2018

Abstract. The aim of this paper is to introduce and characterize a new class of functions called almost \mathcal{I} -continuous functions in ideal topological spaces by using \mathcal{I} -open sets.

1. Introduction

The concept of ideals in topological spaces has been introduced and studied by Kuratowski [11] and Vaidyanathaswamy, [19]. An ideal \mathcal{I} on a topological space (X, τ) is a nonempty collection of subsets of X which satisfies (i) $A \in \mathcal{I}$ and $B \subset A$ implies $B \in \mathcal{I}$ and (ii) $A \in \mathcal{I}$ and $B \in \mathcal{I}$ implies $A \cup B \in \mathcal{I}$. Given a topological space (X, τ) with an ideal \mathcal{I} on X and if $\mathcal{P}(X)$ is the set of all subsets of X, a set operator (.)*: $\mathcal{P}(X) \to \mathcal{P}(X)$, called the local function [19] of A with respect to τ and \mathcal{I} , is defined as follows: for $A \subset X$, $A^*(\tau, \mathcal{I}) = \{x \in X | U \cap A \notin \mathcal{I} \text{ for every } U \in \tau(x)\}$, where $\tau(x) =$ $\{U \in \tau : x \in U\}$. A Kuratowski closure operator $\operatorname{Cl}^*(\cdot)$ for a topology $\tau^*(\tau, \mathcal{I})$ called the \star -topology, finer than τ is defined by $\operatorname{Cl}^*(A) = A \cup A^*(\tau, \mathcal{I})$ when there is no chance of confusion, $A^*(\mathcal{I})$ is denoted by A^* . If \mathcal{I} is an ideal on X, then (X, τ, \mathcal{I}) is called an ideal topological space. The aim of this paper is to introduce and characterize a new class of functions called almost \mathcal{I} -continuous functions in ideal topological spaces by using \mathcal{I} -open sets.

2. Preliminaries

Let A be a subset of a topological space (X, τ) . We denote the closure of A and the interior of A by Cl(A) and Int(A), respectively. A subset A of a topological space (X, τ) is said to be regular open [18] if A = Int(Cl(A)). A set $A \subset X$ is said to be δ -open [20] if it is the union of regular open sets of X. The complement of a regular open (resp. δ -open) set is called regular closed (resp. δ -closed). The intersection of all δ -closed sets

²⁰¹⁰ Mathematics Subject Classification. 54D10.

Key words and phrases. Ideal topological spaces, \mathcal{I} -open sets, almost \mathcal{I} -continuous functions. The authors are grateful to the refereee for his/her comments.

Communicated by: Takashi Noiri

[†]Corresponding author.